首页
科学研究
研究领域
科研项目
著作成果
专利
论文成果
教学研究
教学成果
授课信息
教学资源
获奖信息
学生信息
招生信息
我的相册
教师博客
扫描手机二维码
欢迎您的访问
您是第
位访客
最后更新时间 :
.
.
English
|
手机版
相同专业博导
相同专业硕导
钟志
( 教授(特聘) )
赞
的个人主页 http://grzy.cug.edu.cn/zhongzhi
教授(特聘) 博士生导师 硕士生导师
性别 :
男
出生年月 :
1990年09月13日
毕业院校 :
西弗吉尼亚大学
学历 :
博士研究生
学位 :
哲学博士学位
在职信息 :
在职
所在单位 :
资源学院
入职时间 :
2020年01月01日
学科 :
石油工程 地质学
办公地点 :
文华楼305
联系方式 :
电话:15327320983
Email :
3f18cc52d84a78212fbe1a4e30548ecd01ffc06547837940e462ba62deb44cc71b62f31a57fbc67e5619e861ea3430d358e3a7506aac09b3fcba5202b77d6df941ca6d989d2445a4aa428c403fa11c70e8a397a926557bf3de816faef0d31816e05014f204efe3626ac1d968355ec27c591376eac7eab037d44d5d9d8d182d48
论文成果
当前位置:
中文主页
>>
科学研究
>>
论文成果
[1] Zhong, Zhi; Sun, Alexander Y; Wang, Yanyong; Ren, Bo; Predicting field production rates for waterflooding using a machine learning-based proxy model Journal of Petroleum Science and Engineering 194 107574 2020 Elsevier
[2] Zhong, Zhi; Sun, Alexander Y; Wu, Xinming; Inversion of Time‐Lapse Seismic Reservoir Monitoring Data Using CycleGAN: A Deep Learning‐Based Approach for Estimating Dynamic Reservoir Property Changes Journal of Geophysical Research: Solid Earth 125 3 e2019JB018408 2020
[3] Takbiri-Borujeni, Ali; Kazemi, Mohammad; Liu, Siyan; Zhong, Zhi; Molecular simulation of enhanced oil recovery in shale Energy Procedia 158 6067-6072 2019 Elsevier
[4] Sun, Alexander Y; Zhong, Zhi; Jeong, Hoonyoung; Yang, Qian; Building complex event processing capability for intelligent environmental monitoring Environmental Modelling & Software 116 6-Jan 2019 Elsevier
[5] Liu, Siyan; Zhong, Zhi; Takbiri-Borujeni, Ali; Kazemi, Mohammad; Fu, Qinwen; Yang, Yuhao; A case study on homogeneous and heterogeneous reservoir porous media reconstruction by using generative adversarial networks Energy Procedia 158 6164-6169 2019 Elsevier
[6] Sun, Alexander Y; Scanlon, Bridget R; Zhang, Zizhan; Walling, David; Bhanja, Soumendra N; Mukherjee, Abhijit; Zhong, Zhi; Combining physically based modeling and deep learning for fusing GRACE satellite data: Can we learn from mismatch? Water Resources Research 55 2 1179-1195 2019
[7] He, Qin; Bruno, Jonathan; Zhong, Zhi; Controlling Factors of Shale Gas Production: What can Artificial Intelligence Tell Us? SPE Eastern Regional Meeting 2019 Society of Petroleum Engineers
[8] Zhong, Zhi; Carr, Timothy R; Wu, Xinming; Wang, Guochang; Application of a convolutional neural network in permeability prediction: A case study in the Jacksonburg-Stringtown oil field, West Virginia, USA Geophysics 84 6 B363-B373 2019 Society of Exploration Geophysicists
[9] Zhong, Zhi; Sun, Alexander Y; Jeong, Hoonyoung; Predicting co2 plume migration in heterogeneous formations using conditional deep convolutional generative adversarial network Water Resources Research 55 7 5830-5851 2019
[10] Zhong, Zhi; Sun, Alexander Y; Yang, Qian; Ouyang, Qi; A deep learning approach to anomaly detection in geological carbon sequestration sites using pressure measurements Journal of hydrology 573 885-894 2019 Elsevier
[11] Zhong, Zhi; Liu, Siyan; Carr, Timothy R; Takbiri-Borujeni, Ali; Kazemi, Mohammad; Fu, Qinwen; Numerical simulation of Water-alternating-gas Process for Optimizing EOR and Carbon Storage Energy Procedia 158 6079-6086 2019 Elsevier
[12] Zhong, Zhi; Carr, Timothy R.; Geostatistical 3D geological model construction to estimate the capacity of commercial scale injection and storage of CO2 in Jacksonburg-Stringtown oil field, West Virginia, USA International Journal of Greenhouse Gas Control 80 61-75 2018 Elsevier
[13] Zhong, Zhi; Carr, Timothy R; Application of a new hybrid particle swarm optimization-mixed kernels function-based support vector machine model for reservoir porosity prediction: A case study in Jacksonburg-Stringtown oil field, West Virginia, USA Interpretation 7 1 T97-T112 2019 Society of Exploration Geophysicists and American Association of Petroleum?…
[14] Zhong, Zhi; Liu, Siyan; Kazemi, Mohammad; Carr, Timothy R; Dew point pressure prediction based on mixed-kernels-function support vector machine in gas-condensate reservoir Fuel 232 600-609 2018 Elsevier
[15] Zhong, Zhi; Carr, Timothy R; Application of mixed kernels function (MKF) based support vector regression model (SVR) for CO2–Reservoir oil minimum miscibility pressure prediction Fuel 184 590-603 2016 Elsevier
共15条 1/1
首页
上页
下页
尾页
中国地质大学(武汉)校址:湖北省武汉市鲁磨路388号