Liang Yuan

Professor  

Honors and Titles : 洪堡学者、德国科学基金获得者

Gender : Male

Alma Mater : 日本东北大学

Education Level : Faculty of Higher Institutions

Degree : Doctoral Degree in Science

Status : Employed

School/Department : 地球科学学院

Discipline : Mineralogy, Petrology, and Economic Geology


Current position: Home >> Teaching Research

Personal Profile

现为“地大百人”教授(特聘)。2019年毕业于日本东北大学,获地球与行星物质科学专业理学博士学位。2019至2023年在德国拜仁地质所从事博士后工作。

荣获国家级人才项目楚天学者地大百人等。曾主持① 德国“洪堡学者”基金 德国科学基金会(DFG)基金

受邀担任 Nat. Geosci., Nat. Commun., EPSL, GRL, JGR, Am. Mineral. 等国际期刊的审稿人。


研究方向

本课题组主要致力于研究地球深部物质(如地幔硅酸盐、地核铁合金)在高温高压条件下的物理与化学性质。

研究方法包括第一性原理计算(如 VASP、CP2K)、大规模分子动力学模拟(如 LAMMPS),以及高温高压实验技术(如大腔体压机、金刚石对顶压砧)。

研究方向涵盖:(1)元素分配;(2)同位素分馏;(3)矿物相变;(4)弹性与地震波速等,旨在深化对地球内部物质组成、结构演化及其动力学过程的理解。

欢迎对相关课题感兴趣的同学通过电子邮件(yuanliang@cug.edu.cn)联系交流。


理论模拟研究对高性能计算资源有较高依赖。为支持相关计算任务的开展,课题组已建设高性能计算平台,目前配置包括21个计算节点(其中13个为 CPU 节点,8个为 GPU 节点,单节点配备128个物理核心)及1个管理节点。

GPU 节点共搭载16张 NVIDIA RTX 4090 显卡,可高效支持基于机器学习的分子动力学模拟(如 DeePMD、GPUMD)等大规模计算任务。




研究成果

地球在其形成演化过程中,如何获取挥发性元素(如H、C、N等),以建立生命宜居的基本条件,一直是科学界争论的焦点。由于缺失极端温压条件下的分配数据,人们无法全面地了解挥发性元素在地球内部的丰度与圈层之间的分布,也就难以揭示它们的起源与演化历史。

为了解决上述研究瓶颈,我们建立了具有广泛适用性、元素分配系数的第一性原理计算方法(Yuan et al., 2024, JGR; 2023, EPSL; 2022, GRL; 2021, JGR; 2020, JGR; 2020, GRL),其主要价值在于两方面:

(1) 该方法能够在极端地质温压条件下对各种元素的分配行为进行量化研究,为约束地球内部挥发元素的丰度和分布提供了一种系统的有效途径;

(2) 该方法以量子力学、分子动力学为理论基础,为理解元素的物理化学行为提供了电子、原子等微观层面的重要信息。


已发表国际期刊论文15篇,含第一作者论文8篇 (包括1篇EPSL、3篇JGR、3篇GRL、1篇PCM,其中自然指数期刊论文7篇)。


第一及通讯(*)作者论文

[8] Yuan, L.*, Steinle‐Neumann, G., 2024. Earth's "missing" chlorine may be in the core. Journal of Geophysical Research: Solid Earth, 129, e2023JB027731. https://doi.org/10.1029/2023JB027731

[7] Yuan, L.*, Steinle-Neumann, G., 2023. Hydrogen distribution between the Earth's inner and outer core. Earth and Planetary Science Letters, 609, 118084. https://doi.org/10.1016/j.epsl.2023.118084
[6] Yuan, L.*, Steinle‐Neumann, G., 2022. Possible control of Earth's boron budget by metallic iron. Geophysical Research Letters, 49, e2021GL096923. https://doi.org/10.1029/2021GL096923
[5] Yuan, L.*, Steinle‐Neumann, G., 2021. The helium elemental and isotopic compositions of the Earth's core based on ab initio simulations. Journal of Geophysical Research: Solid Earth, 126, e2021JB023106. https://doi.org/10.1029/2021jb023106
[4] Yuan, L.*, Steinle-Neumann, G., 2020. Strong sequestration of hydrogen into the Earth's core during planetary differentiation. Geophysical Research Letters, 47, e2020GL088303. https://doi.org/10.1029/2020GL088303
[3] Yuan, L.*, Steinle‐Neumann, G., Suzuki, A., 2020. Structure and density of H2O‐rich Mg2SiO4 melts at high pressure from ab initio simulations. Journal of Geophysical Research: Solid Earth, 125, e2020JB020365. https://doi.org/10.1029/2020JB020365
[2] Yuan, L.*, Ohtani, E., Ikuta, D., Kamada, S., Tsuchiya, J., Naohisa, H., Ohishi, Y., Suzuki, A., 2018. Chemical reactions between Fe and H2O up to megabar pressures and implications for water storage in the Earth's mantle and core. Geophysical Research Letters, 45, 1330–1338. https://doi.org/10.1002/2017GL075720
[1] Yuan, L.*, Ohtani, E., Shibazaki, Y., Ozawa, S., Jin, Z., Suzuki, A., Frost, D.J., 2018. The stability of anhydrous phase B, Mg14Si5O24, at mantle transition zone conditions. Physics and Chemistry of Minerals, 45, 523–531. https://doi.org/10.1007/s00269-017-0939-5

 

合作论文
[7] Aslandukova, A., Aslandukov, A., Yuan, L., Laniel, D., Khandarkhaeva, S., Fedotenko, T., Steinle-Neumann, G., Glazyrin, K., Dubrovinskaia, N., Dubrovinsky, L., 2021. Novel high-pressure yttrium carbide γ − Y4C5 containing [C2] and nonlinear [C3] units with unusually large formal charges. Physical Review Letters 127, 135501. https://doi.org/10.1103/physrevlett.127.135501
[6] Aslandukov, A., Aslandukova, A., Laniel, D., Koemets, I., Fedotenko, T., Yuan, L., Steinle-Neumann, G., Glazyrin, K., Hanfland, M., Dubrovinsky, L., Dubrovinskaia, N., 2021. High-pressure yttrium nitride, Y5N14, featuring three distinct types of nitrogen dimers. Journal of Physical Chemistry C 125, 18077–18084. https://doi.org/10.1021/acs.jpcc.1c06210
[5] Koemets, E., Yuan, L., Bykova, E., Glazyrin, K., Ohtani, E., Dubrovinsky, L., 2020. Interaction between FeOOH and NaCl at extreme conditions: synthesis of novel Na2FeCl4OHx compound. Minerals 10, 51. https://doi.org/10.3390/min10010051
[4] Ishii, T., Huang, R., Myhill, R., Fei, H., Koemets, I., Liu, Z., Maeda, F., Yuan, L., Wang, L., Druzhbin, D., Yamamoto, T., Bhat, S., Farla, R., Kawazoe, T., Tsujino, N., Kulik, E., Higo, Y., Tange, Y., Katsura, T., 2019. Sharp 660-km discontinuity controlled by extremely narrow binary post-spinel transition. Nature Geoscience 12, 869–872. https://doi.org/10.1038/s41561-019-0452-1
[3] Ikuta, D., Ohtani, E., Sano-Furukawa, A., Shibazaki, Y., Terasaki, H., Yuan, L., Hattori, T., 2019. Interstitial hydrogen atoms in face-centered cubic iron in the Earth's core. Scientific Reports 9, 7108. https://doi.org/10.1038/s41598-019-43601-z
[2] Ishii, T., Huang, R., Fei, H., Koemets, I., Liu, Z., Maeda, F., Yuan, L., Wang, L., Druzhbin, D., Yamamoto, T., Bhat, S., Farla, R., Kawazoe, T., Tsujino, N., Kulik, E., Higo, Y., Tange, Y., Katsura, T., 2018. Complete agreement of the post-spinel transition with the 660-km seismic discontinuity. Scientific Reports 8, 6358. https://doi.org/10.1038/s41598-018-24832-y
[1] Ohtani, E., Yuan, L., Ohira, I., Shatskiy, A., Litasov, K., 2018. Fate of water transported into the deep mantle by slab subduction. Journal of Asian Earth Sciences 167, 2–10. https://doi.org/10.1016/j.jseaes.2018.04.024