- [1] Wang, Z., Zuo, R., Zhang, Z., 2015. Spatial analysis of Fe deposits in Fujian Province, China: Implications for mineral exploration. Journal of Earth Science, 26(6), 813-820.
- [2] Wang, Z., Dong, Y., Zuo, R., 2019. Mapping geochemical anomalies related to Fe–polymetallic mineralization using the maximum margin metric learning method. Ore Geology Reviews, 107, 258-265.
- [3] Wang, Z., Zuo, R., Dong, Y., 2019. Mapping geochemical anomalies through integrating random forest and metric learning methods. Natural Resources Research, 28(4), 1285-1298.
- [4] Wang, Z., Zuo, R., Dong, Y., 2020. Mapping Himalayan leucogranites using a hybrid method of metric learning and support vector machine. Computers & Geosciences, 138, 104455.
- [5] Wang, Z., Yin, Z., Caers, J., Zuo, R., 2020. A Monte Carlo-based framework for risk-return analysis in mineral prospectivity mapping. Geoscience Frontiers, 11(6), 2297-2308.
- [6] Wang, Z., Zuo, R., Dong, Y., 2020. Mapping of himalaya leucogranites based on ASTER and sentinel-2A datasets using a hybrid method of metric learning and random forest. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1925-1936.
- [7] Wang, Z., Zuo, R., Jing, L., 2021. Fusion of geochemical and remote-sensing data for lithological mapping using random forest metric learning. Mathematical Geosciences, 53(6), 1125-1145.
- [8] Wang, Z., Zuo, R., Liu, H., 2021. Lithological mapping based on fully convolutional network and multi-source geological data. Remote Sensing, 13(23), 4860.
- [9] Wang, Z., Zuo, R., 2022. Mineral prospectivity mapping using a joint singularity-based weighting method and long short-term memory network. Computers & Geosciences, 158, 104974.
|