|
基本信息Personal Information
性别 : 男
出生年月 : 1977-11-01
学历 : 博士研究生毕业
学位 : 理学博士学位
在职信息 : 在岗
所在单位 : 应用系
入职时间 : 2005-07-01
学科 : 空间信息与数字技术
Ruyi Feng, Zhongyu Guo and Xiaofeng Wang*. A Recurrent Feedback Hyperspectral Image Super-Resolution Reconstruction Method by Using of Self-Attention-Based Pixel Awareness. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 17, pp. 18502-18516, 2024.
点击次数:
所属单位:计算机学院
刊物所在地:USA
关键字:Feedback embedding, hyperspectral image (HSI), pixel awareness, recurrent network, super-resolution
摘要:Hyperspectral images (HSIs) contain abundant spec tral information, while the spatial resolution is usually limited. To obtain high-spatial-resolution HSIs, various HSI super-resolution (SR) methods are proposed. Currently, deep-learning-based SR reconstruction methods are studied in depth, which take different measures to make full use of the spatial and spectral information of HSIs, and optimize the network with lots of trainings. Although they have achieved satisfying spatial resolution, the spectral con sistency before and after reconstruction is difficult to guarantee. In this article, we
合写作者:Ruyi Feng, Zhongyu Guo and Xiaofeng Wang*
论文类型:期刊论文
通讯作者:Xiaofeng Wang
学科门类:工学
一级学科:计算机
文献类型:J
是否译文:否
收录刊物:EI

