个人简历
沈永林,教授,北京师范大学与美国乔治梅森大学联合培养博士,农业农村大数据专家库专家,中国环境科学学会环境信息系统与遥感专业委员会委员。主要从事农情遥感监测、农业源碳氮大气环境遥感、耕地土壤健康安全、数字孪生系统等研究及应用。围绕粮食安全和双碳目标的国家战略,关注于农业、大气环境、人工智能等相关专业或领域的交叉融合,突破作物遥感识别、物候表征与检测、农业源大气污染估算等关键技术,开发了“智能装备-核心算法-业务系统”成套产品,形成科研论文、国家专利、学术专著、行业标准等一系列成果,积极推动产业化落地应用,为国家粮食安全保障、耕地双非管控、农业双碳减排等提供技术支撑。主持与参与由教育部、科技部、国家海洋局、农业农村部、生态环境部、美国国家航空和宇宙航行局等发起的项目20余项。结合研究成果,发表期刊论文50余篇、会议论文15余篇、参与标准起草2项、参与发明专利申请9项(已成功转化2项)、实用新型专利2项、软件著作权6项、参与书籍撰写5部。担任ISPRS Journal of Photogrammetry and Remote Sensing、International Journal of Remote Sensing、International Journal of Digital Earth、Computer and Electronics in Agriculture、Science of the Total Environment、Agricultural and Forest Meteorology、Journal of Applied Science and Engineering、地理与地理信息科学、中国稀土学报、农业机械学报等期刊的审稿人。
目前在国家地理信息系统工程技术研究中心(http://gis.cug.edu.cn/) 招收资源与环境、电子信息专业研究生。欢迎有志青年联系shenyl@cug.edu.cn
1. 项目主持与参与
[21]面向典型作物季内识别的遥感物候表征与检测研究,国家自然科学基金面上基金项目(42271397). 2023/01-2026/12;
[20]越城区受污染耕地“源解析”
[19]利用时序极化合成孔径雷达的农情监测,自然资源部地理国情监测重点实验室开放基金
[18]依托学科竞赛的遥感专业双创人才培养探讨, 教育部高等教育司2021年产学研合作协同育人项目
[17]面向城市综合管理在线服务的智能装备,国家重点研发计划
[16]无人机摄影测量三维建模实践创新教学研究,实践发育人项目;
[15]遥感观测约束的农田土壤NOx排放估计方法研究,中科院地理所资源与环境信息系统国家重点实验室开放基金;
[14]青海省农作物分布制图, 青海省农牧业遥感中心;
[13]顾及物候的玉米作物干旱遥感监测模型研究,国家自然科学基金青年科学基金项目(41501459). 2016/01-2018/12;
[12]海洋灾害损失的市场与非市场价值评估研究, 国家海洋局海洋减灾中心 (2016AA053). 2016/12-2017/11;
[11]学习-促进多元角色模式的遥感专业课程教学研究与实践. 中国地质大学(武汉)A类一般教研项目
[10]基于分形的玉米作物物候动态检测算法研究,中国博士后科学基金面上资助(2013M542086). 2014/01-2015/12;
[9]基于结构推理的农作物多参量旱情监测方法研究,中央高校新青年教师科研启动基金.(CUGL140834). 2014/01-2015/12;
[8]基于低空无人机影像的煤矸石山三维重建及滑坡监测方法研究, 河南理工大学矿山空间信息技术国家测绘局重点实验室开放基金(KLM201108). 2011/11-2013/10;
[7]高分辨率极化SAR图像对象化目标分解方法研究, 国家自然基金面上项目(41471355). 2015/1-2018/12.
[6]长江流域乌江赤水河上中游重点治理区等水土流失动态监测遥感解译技术服务, 长江水利委员会长江流域水土保持监测中心站课题. 2015/04-2015/10.
[5]低空影像与地面LiDAR数据融合及灾情特征提取方法研究, 北京师范大学自主科研基金. 2011/01-2013 /12.
[4]低空遥感影像序列中典型灾损地物优化建模与演进评估模型研究, 国家自然基金面上项目(41271013).
[3]基于车载LiDAR数据的建筑物灾情应急测量关键技术研究, 国家自然基金青年基金项目(41001304). 2011/01-2013/12.
[2]地球系统三维格网与中-大尺度对象三维表达研究. 国家自然基金重点项目(40930104). 2010/01-2013 /12.
[1]基于非下采样Contourlet变换的多源影像自动匹配方法研究. 国家自然科学基金青年科学基金项目(40901200). 2009/01-2011/12.
2. 书籍撰写
[5] 汪云飞,沈永林,陈晓茜. 从企业级开发到云原生微服务 Spring Boot实战. 电子工业出版社. 2019
[4] 沈永林, 王迪,申克建,孙政. 基于分形和结构推理的玉米旱情遥感监测方法研究.中国农业科学技术出版社. 2018
[3] 王迪,沈永林,孙政.作物长势遥感监测中物候和轮作方式的影响分析. 中国农业科学技术出版社. 2017
[2] 王迪,沈永林, 周清波, 陈仲新, 东朝霞. 基于合成孔径雷达数据的旱地作物识别与长势监测研究. 中国农业科学技术出版社. 2016
[1] 柳盛, 汪国全,沈永林. C语言开发通用范例开发金典. 北京:电子工业出版社, 2008
3. 专利申请
[18]沈永林,杨天宇,吴雨婷,高辰昕.面向遥感作物制图的系统性分类样本提纯与扩充方法(申请号202411635831.6)
[17]沈永林,马雨阳. 一种考虑粗细分辨率尺度转换误差校正的云计算时空融合方法(申请号:CN202211721897.8)
[16]胡楚丽, 程萍, 程一凡, 沈永林. 用于小区智能巡查的多传感器集成式机器人.(专利号:ZL 2022 2 3024895.1)
[15]沈永林,程一凡,胡楚丽. 现场智能巡查装备移动端系统[简称:巡查装备APP]V1.0 (登记号2022SR0510418)
[14]沈永林, 赵万锦, 肖文. 一种用于多源数据匹配的反射标靶装置. (实用新型专利号:202320777517)
[13]沈永林,刘鑫凯.一种迭代包络线抽取的时序遥感植被指数重构方法(申请号:201810664380.7)
[12]沈永林.一种海洋溢油灾害损失的非市场价值评估方法及系统(申请号: 201711130727.1)
[11]沈永林,刘鑫凯.一种风暴潮灾害损失的非市场价值评估方法及系统(申请号: 201711129800.3)
[10]沈永林, 一种用于无人机地面测量控制的标识装置(申请号:201620719783.3)
[9]沈永林,艾烨霜.一种适应噪声条件下的抽样学习机遥感定量反演方法(申请号:201510342376.5)
[8]侯少杰,蒋劲,娄本科,王旭东,沈永林.中国区农情监测系统(软件著作权,登记号2018SR978984)
[7]吴立新,沈永林.一种利用飞控数据的低空影像快速匹配方法.(专利号:ZL201110026667.5)
[6]刘宇,吴翰,李亚楠,范雯,沈永林.近海海域赤潮灾害决策支持系统(软件著作权,登记号2018SR394916)
[5]刘宇,吴翰,李亚楠,范雯,沈永林.近海海域叶绿素浓度遥感定量反演系统(软件著作权,登记号2018SR39509)
[4]张立豪,张宁鹏,周宇,沈永林.南海海面油膜遥感识别系统(软件著作权,登记号2017SR246265)
[3]张立豪,张宁鹏,周宇,沈永林.南海海面溢油灾害决策支持系统(软件著作权,登记号2017SR233223)
[2]吴立新,沈永林.一种地面激光点云与无人机影像重建点云的精配准方法.(申请号:201310264650.2);
[1]吴立新,吴鹏天昊,沈永林.一种基于多尺度格网与分维变化的灾害遥感自动识别方法.(申请号:201110257529.8)
4. 标准制定
[2] NY/T 4378-2023 农业遥感调查通用技术 农作物干旱监测技术规范. 中华人民共和国农业行业标准,排名4
[1] DB42/T 17212021导航与位置服务路网数据生产技术规程. 湖北省地方标准,排名16
5. 第一/通讯的期刊论文
[24]Xiao Zemin,Yu Li,Shen Yonglin*,Chan Ka Lok,Yao Ling,Zhou Chenghu. Observational evidence for dynamic effect of cropland form on ozone in China.Urban Climate. 2024, 55, 101917
[23] Ma Yuyang, Shen Yonglin*, Shen Guoling, Wang Jie, Xiao Wen, He Huiyang, Hu Chuli, Qin Kai. STEPSBI: Quick spatiotemporal fusion with coarse- and fine-resolutionscale transformation errors and pixel-based synthesis base image pair. ISPRS Journal of Photogrammetry and Remote Sensing. 2023, 206: 1-15
[22] Ma Yuyang, Shen Yonglin*, Guan Haixiang, Wang Jie, Hu Chuli*. A novel approach to detect the spring corn phenology using layered strategy. International Journal of Applied Earth Observation and Geoinformation. 2023, 122: 103422
[22] Shen Yonglin, Xiao Zemin, Wang Yi, Xiao Wen, Yao Ling, Chenghu Zhou. Impacts of Agricultural Soil NOx Emissions on O3 Over Mainland China. Journal of Geophysical Research: Atmospheres. 2023, 128(4):1-16
[21] Ahmed Maqsood, Shen Yonglin*, Mansoor Ahmed, Zemin Xiao, Ping Cheng, Nafees Ali, Abdul Ghaffar, Sabir Ali. AQE-Net: A Deep Learning Model for Estimating Air Quality of Karachi City from Mobile Images. Remote Sensing.2022,14,5732
[20] Shen Yonglin, Xiao Zemin, Wang Yi, Yao Ling, Xiao Wen. Multisource Remote Sensing Based Estimation of Soil NOX Emissions from Fertilized Cropland at High-resolution: Spatio-temporal Patterns and Impacts. Journal of Geophysical Research: Atmospheres. 2022. 127(20):1-20
[19] 沈永林, 江昌民, 肖泽敏, 姚凌, 秦凯. 中国田块尺度露天生物质燃烧NOx遥感排放清单. 大气与环境光学学报.2022,17(6):655-669
[18] 胡楚丽,程萍,程一凡,付海涛,祁昆仑,陈栋,陈能成,沈永林*.城市网格化综合管理服务的云边端协同计算框架. 测绘与空间地理信息(已接收)
[17] 沈永林,骆济豪,马雨阳,姚凌,胡楚丽. 中国能源金三角NO2时空格局及其驱动因子.中国环境科学 2022,42(4):1585-1593
[16] Ahmed Maqsood, Xiao Zemin, Shen Yonglin*. Estimation of Ground PM2.5 Concentrations in Pakistan Using Convolutional Neural Network and Multi-Pollutant Satellite Images. Remote Sensing, 2022, 14(7), 1735
[15] Shen Yonglin, Shen Guoling, Zhai Han, Yang Chao, Qi Kunlun. A gaussian kernel-based spatiotemporal fusion model for agricultural remote sensing monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2021, 14, 3533-3545.
[14] Shen Yonglin, Jiang Changmin, Chan Ka Lok, Hu Chuli and Yao Ling. Estimation of Field-Level NOx Emissions from Crop Residue Burning Using Remote Sensing Data: A Case Study in Hubei, China. Remote Sensing. 2021, 13, 404.
[13] He Hongbin, Shen Yonglin*, Jiang Changmin, Li Tianqi, et al. Spatiotemporal Big Data for PM2.5 Exposure and Health Risk Assessment during COVID-19. International Journal of Environmental Research and Public Health, 2020, 17, 7664.
[12] Liu Xinkai, Zhai Han, Shen Yonglin*, Lou Benke, Jiang Changmin, Li Tianqi, Hussain SayedBilal, Shen Guoling. Large-Scale Crop Mapping From Multisource Remote Sensing Images in Google Earth Engine. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2020; 13:414-427.
[11] 沈永林,刘修国,吴立新,苏红军,何浩.Hyperion高光谱影像坏线修复的局部空间-光谱相似性测度方法. 武汉大学学报∙信息科学版. 2017, 42(4):456-462
[10] Zheng Guizhou, Chen Feng, Shen Yonglin*.Detecting the water depth of the South China Sea reef area from WorldView-2 satellite imagery. Earth Science Informatics, 2017,10:331-337.
[9] Shen Yonglin, Yao Ling. PM2.5, Population Exposure and Economic Effects in Urban Agglomerations of China Using Ground-Based Monitoring Data. International Journal of Environmental Research and Public Health, 2017, 14, 716.
[8] Shen Yonglin, Liu Xiuguo, Yuan Xiaohui. Fractal Dimension of Irregular Region of Interest Application to Corn Phenology Characterization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017,10(4):1402-1412.
[7]艾烨霜,沈永林*. 顾及测量不确定性的水体悬浮物浓度遥感定量反演方法. 光学学报, 2016, 36(7).
[6] Shen Yonglin, Liu Xiuguo. Phenological Changes of Corn and Soybeans over U.S. by Bayesian Change-Point Model.Sustainability, 2015, 7(6), 6781-6803.
[5]黄友昕,刘修国,沈永林*,刘诗诗,孙飞.农业干旱遥感监测指标及其适应性评价方法研究进展. 农业工程学报,2015,31(16):186-195.
[4] Shen Yonglin, Di Liping, Yu Genong, Wu Lixin, Correlation between Corn Progress Stages and Fractal Dimension from MODIS-NDVI Time Series.IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1065-1069.
[3] Shen Yonglin, Wu Lixin, Di Liping, Yu Genong, Tang Hong, Yu Guoxian, Shao Yuanzheng. Hidden Markov Models for Real-Time Estimation of Corn Progress Stages using MODIS and Meteorological Data.Remote Sensing, 2013, 5(4):1734-1753.
[2]沈永林,刘军,吴立新,李发帅,王植.基于无人机影像和飞控数据的灾场重建方法研究.地理与地理信息科学,2011,27(6):13-17.
[1]沈永林,李晓静,吴立新.基于航空影像和LiDAR数据的海地地震滑坡识别研究.地理与地理信息科学,2011,27(1):16-20.
6. 合作的期刊论文
[20]Ahmed Maqsood, Zhang Xiang, Shen Yonglin, et al. A deep transfer learning based convolution neural network framework for air temperature classiffcation using human clothing images. Scientifc Reports, 2024,14:31658
[19] Zhang Mingshuai, Zhao Chun, Yang Yuhan, Du Qiuyan, Shen Yonglin, Lin Shengfu, Gu Dasa, Su Wenjing, Liu Cheng. Modeling sensitivities of BVOCs to different versions of MEGAN emission schemes in WRF-Chem (v3.6) and its impacts over eastern China. Geoscientific Model Development. 2021, 14, 6155-6175
[18]Zhou Yangyang,Gao Wei,Yang Chen,Shen Yonglin.Exploratory analysis of the influence of landscape patterns on lake cooling effect in Wuhan, China.Urban Climate, 2021,39:100969
[17] Qi Kunlun,Yang Chao, Hu Chuli, Shen Yonglin,Wu Huayi.Deep Object-Centric Pooling in Convolutional Neural Network for Remote Sensing Scene Classification.IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2021.
[16] Qi Kunlun, Yang Chao, Hu Chuli, Shen Yonglin, Shen Shengyu, Wu Huayi. Rotation invariance regularization for remote sensing image scene classification with convolutional neural networks. Remote Sensing, 2021, 13(4), 569
[15] Li Jingtao, Shen Yonglin, Yang Chao.An Adversarial Generative Network for Crop Classification from Remote Sensing Timeseries Images.Remote Sensing. 2021, 13(1), 65
[14] Sun Jie, Lai Zulong, Di Liping, Sun Ziheng, Tao Jianbin, Shen Yonglin. Multi-level deep learning network for county-level corn yield estimation in the U.S. Corn Belt. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13, 5048—5060.
[13] Chen Nengcheng, Yu Lixiaona, Zhang Xiang, Shen Yonglin, Zeng Linglin, Hu Qiong, Niyogi Dev. Mapping Paddy Rice Fields by Combining Multi-Temporal Vegetation Index and Synthetic Aperture Radar Remote Sensing Data using Google Earth Engine Machine Learning Platform. Remote Sensing, 2020, 12(18), 2992.
[12] 孙丽,钱永兰,吴尚荣,邓辉,沈永林,陶双华,王蔚丹,孙娟英.2020年我国冬小麦长势动态监测.安徽农业科学,2020,48(21):230-233,273
[11] 黄友昕,胡茂胜,沈永林,刘修国,罗琼,孙飞. MODIS干旱指数结合RBFNN反演冬小麦返青期土壤湿度.农业工程学报.2019,35(12):81-88
[10] Sun Jie, Di Liping, Sun Zihen, Shen Yonglin, Lai Zulong. County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model. Sensors 2019; 19(20):4363.
[9] He Hao, Liu Xiuguo, Shen Yonglin. Relative radiometric correction of high-resolution remote sensing images based on feature category. Cluster Computing, 2019, 7933–7941.
[8] Zhang B., Wang C.p., Shen Y.L., Liu Y.L. Fully Connected Conditional Random Fields for High-Resolution Remote Sensing Land Use/Land Cover Classification with Convolutional Neural Networks. Remote Sensing. 2018, 10, 1889.
[7] Zhang Bin, Liu Yueyan,Zhang Zuyu, Shen Yonglin.Land Use and Land Cover Classification for Rural Residential Areas in China Using Soft-probability Cascading of Multi-features. Journal of Applied Remote Sensing, 2017, 11(4):1.
[6]何浩,沈永林,刘修国,马丽. 空间-光谱约束的图半监督高光谱影像分类算法.国土资源遥感.2016, 28(3):31-36.
[5] 梁栋,王红平,刘修国,沈永林.基于平面基元组的建筑物场景点云自动配准方法. 武汉大学学报∙信息科学版. 2016, 41(12):1613-1618
[4]许志华,吴立新,刘军,沈永林,李发帅,王然.顾及影像拓扑的SfM算法改进及其在灾场三维重建中的应用.武汉大学学报∙信息科学版. 2015,40(5):599-606.
[3] Zhai Xuejun, Niu Xiaonan, Tang Hong, Wu Lixin,Shen Yonglin. Robust Satellite Scheduling Approach for Dynamic Emergency Tasks.Mathematical Problems in Engineering, 2015, 2015:1-20.
[2] Xu Zhihua, Wu Lixin,Shen Yonglin, Li Fashuai, Wang Qiulin, Wang Ran. Tridimensional Reconstruction Applied to Cultural Heritage with the Use of Camera-Equipped UAV and Terrestrial Laser Scanner.Remote Sensing, 2014, 6(11), 10413-10434
[1]吴鹏天昊,吴立新,沈永林,许志华,王植.基于高分影像纹理分维变化的灾害自动识别方法.地理与地理信息科学,2012,28(2):9-13.