Doctoral Supervisor
Master Tutor
The Last Update Time : ..
本人每年可招收博士研究生1名,硕士研究生3名。欢迎对"智能计算及其相关应用"感兴趣的同学发邮件到wygong@cug.edu.cn.谢谢。
龚文引,博士,教授,博士生导师,湖北省杰出青年基金获得者。分别于2004年、2007年和2010年在中国地质大学(武汉)计算机学院获得学士、硕士和博士学位。主要研究方向为智能计算及其应用。现担任中国仿真学会理事、湖北省计算机学会副秘书长、ECOLE执委会委员,国际期刊Swarm and Evolutionary Computation、Expert Systems with Applications、Memetic Computing、IJBIC、CSMS编委。主持国家重点研发计划项目课题一项、国家自然科学基金项目3项、教育部博士学科点基金一项。在SCI期刊发表论文140余篇,其中ESI高被引论文7篇,出版专著2部、译著1部。曾获得湖北省自然科学奖二等奖两项(R1、R2)、湖北省教学成果奖二等奖一项(R3)、湖北省优秀博士学位论文奖、湖北省优秀硕士学位论文奖等奖励。
更多信息请访问:https://wewnyin.github.io/wenyingong
曾获得第六届和第七届中国地质大学(武汉)“研究生良师益友”称号。
曾获得首届中国地质大学(武汉)“卓越青年研究生导师”称号。
指导学生发表的部分代表性论文(第一作者均为本人指导的研究生):
Only selected pubs are listed.
More info & Codes: https://wewnyin.github.io/wenyingong/pubs.htm
[30] Y. Li, X. Wu, W. Gong*, M. Xu, Y. Wang, and Q. Gu, Evolutionary competitive multiobjective multitasking: One-Pass optimization of heterogeneous Pareto solutions, IEEE Transactions on Evolutionary Computation, Dec. 2024, Accepted.
[29] Y. Li, D. Li, W. Gong*, and Q. Gu, Multiobjective multitask optimization via diversity and convergence oriented knowledge transfer, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Dec. 2024, Accepted.
[28] C. Luo, X. Li, W. Gong, and L. Gao, Affinity propagation hierarchical memetic algorithm for multimodal multi-objective flexible job shop scheduling with variable speed, IEEE Transactions on Evolutionary Computation, Dec. 2024, Accepted.
[27] Y. Li, W. Gong*, and Q. Gu, Transfer task-averaged natural gradient for efficient many-task optimization, IEEE Transactions on Evolutionary Computation, Sept. 2024, Accepted.
[26] Y. Wang, C. Hu, F. Ming, Y. Li, W. Gong, and L. Gao, A diversity-enhanced tri-stage framework for constrained multi-objective optimization, IEEE Transactions on Evolutionary Computation, Sept. 2024, Accepted.
[25] S. Li, R. Wang, W. Gong, Z. Liao, and L. Wang, A co-evolutionary dual niching differential evolution algorithm for nonlinear equation systems optimization, IEEE Transactions on Emerging Topics in Computational Intelligence, June 2024, Accepted.
[24] R. Li, L. Wang, W. Gong*, F. Ming, An evolutionary multitasking memetic algorithm for multi-objective distributed heterogeneous welding flow shop scheduling, IEEE Transactions on Evolutionary Computation, April 2024, Accepted.
[23] X. Chu, F. Ming, and W. Gong*, Competitive multitasking for computational resource allocation in evolutionary constrained multi-objective optimization, IEEE Transactions on Evolutionary Computation, March 2024, Accepted.
[22] Y. Li and W. Gong*, Multiobjective multitask optimization with multiple knowledge types and transfer adaptation, IEEE Transactions on Evolutionary Computation, Jan. 2024, Accepted.
[21] F. Ming, B. Xue, M. Zhang, W. Gong*, and H. Zhen, Constrained multi-objective optimization via relaxations on both constraints and objectives, IEEE Transactions on Artificial Intelligence, vol. 5, no. 12, pp. 6709-6722, Dec. 2024.
[20] Y. Li, W. Gong*, and S. Li, Multitask evolution strategy with knowledge-guided external sampling, IEEE Transactions on Evolutionary Computation, vol. 28, no. 6, pp. 1733-1745, Dec. 2024.
[19] R. Li, W. Gong*, L. Wang, C. Lu, Z. Pan, and X. Zhuang, Double DQN-based coevolution for green distributed heterogeneous hybrid flowshop scheduling with multiple priorities of jobs, IEEE Transactions on Automation Science and Engineering, vol. 21, no. 4, pp. 6550-6562, Oct. 2024.
[18] Y. Li, W. Gong*, Z. Hu, and S. Li, A competitive and cooperative evolutionary framework for ensemble of constraint handling techniques, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 54, no. 4, pp. 2440-2451, April 2024.
[17] F. Ming, W. Gong*, L. Wang, and L. Gao, Constrained multi-objective optimization via multitasking and knowledge transfer, IEEE Transactions on Evolutionary Computation, vol. 28, no. 1, pp. 77-89, Feb. 2024.
[16] S. Li, W. Gong*, L. Wang, and Q. Gu, Evolutionary multitasking via reinforcement learning, IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 8, no. 1, pp. 762-775, Feb. 2024.
[15] R. Li, W. Gong*, L. Wang, C. Lu, and C. Dong, Co-evolution with deep reinforcement learning for energy-aware distributed heterogeneous flexible job shop scheduling, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 54, no. 1, pp. 201-211, Jan. 2024.
[14] R. Li, W. Gong*, L. Wang, C. Lu, and X. Zhuang, Surprisingly popular-based adaptive memetic algorithm for energy-efficient distributed flexible job shop scheduling, IEEE Transactions on Cybernetics, vol. 53, no. 12, pp. 8013-8023, Dec. 2023.
[13] F. Ming, W. Gong*, L. Wang, and L. Gao, A constraint-handling technique for decomposition-based constrained many-objective evolutionary algorithms, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 12, pp. 7783-7793, Dec. 2023.
[12] F. Ming, W. Gong*, D. Li, L. Wang, and L. Gao, A competitive and cooperative swarm optimizer for constrained multi-objective optimization problems, IEEE Transactions on Evolutionary Computation, vol. 27, no. 5, pp. 1313-1326, Oct. 2023.
[11] F. Ming, W. Gong*, L. Wang, and L. Gao, A constrained many-objective optimization evolutionary algorithm with enhanced mating and environmental selections, IEEE Transactions on Cybernetics, vol. 53, no. 8, pp. 4934-4946, Aug. 2023.
[10] Z. Liao, W. Gong*, and S. Li, Two-stage reinforcement learning-based differential evolution for solving nonlinear equations, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 7, pp. 4279-4290, July 2023.
[9] H. Zhen, W. Gong*, and L. Wang, Evolutionary sampling agent for expensive problems, IEEE Transactions on Evolutionary Computation, vol. 27, no. 3, pp. 716-727, June 2023.
[8] R. Li, W. Gong*, C. Lu, and L. Wang, A learning-based memetic algorithm for energy-efficient flexible job shop scheduling with type-2 fuzzy processing time, IEEE Transactions on Evolutionary Computation, vol. 27, no. 3, pp. 610-620, June 2023.
[7] F. Ming, W. Gong*, and L. Gao, Adaptive auxiliary task selection for multitasking-assisted constrained multi-objective optimization, IEEE Computational Intelligence Magazine, vol. 18, no. 2, pp. 18-30, May 2023.
[6] F. Ming, W. Gong*, L. Wang, and L. Gao, Balancing convergence and diversity in objective and decision spaces for multimodal multi-objective optimization, IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 7, no. 2, pp. 474-486, April 2023.
[5] H. Zhen, W. Gong*, L. Wang, F. Ming, and Z. Liao, Two-stage data-driven evolutionary optimization for high-dimensional expensive problems, IEEE Transactions on Cybernetics, vol. 53, no. 4, pp. 2368-2379, April 2023.
[4] Z. Zhang, Y. Cai, and W. Gong*, Evolution-driven randomized graph convolutional networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 12, pp. 7516-7526, Dec. 2022.
[3] K. Wang, W. Gong*, Z. Liao, and L. Wang, Hybrid niching-based differential evolution with two archives for nonlinear equations system, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 12, pp. 7469-7481, Dec. 2022.
[2] F. Ming, W. Gong*, and L. Wang, A two-stage evolutionary algorithm with balanced convergence and diversity for many-objective optimization, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 10, pp. 6222-6234, Oct. 2022.
[1] Z. Liao, W. Gong*, X. Yan, L. Wang, and C. Hu, Solving nonlinear equations system with dynamic repulsion-based evolutionary algorithms. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2020, 50(4): 1590-1601.
中国地质大学(武汉)  Geological resources and geological engineering  Faculty of Higher Institutions  博士学位
中国地质大学(武汉)  Computer science and technology  With Certificate of Graduation for Study as Master's Candidates  Master's Degree
中国地质大学(武汉)  Computer science and technology  Editor  Bachelor's Degree
中国地质大学(武汉) 计算机学院
email :
本团队致力于与智能优化与机器学习及其应用相关领域的前沿研究