龚文引

基本信息Personal Information

博士生导师 硕士生导师

曾获荣誉 : 博士,教授,博士生导师,湖北省杰出青年基金获得者,入选”地大学者”学科骨干人才。

性别 : 男

毕业院校 : 中国地质大学(武汉)

学历 : 博士研究生

学位 : 工学博士学位

在职信息 : 在职

所在单位 : 计算机学院

入职时间 : 2010年07月01日

学科 : 计算机科学与技术

办公地点 : 未来城校区计算机学院大楼601

联系方式 : wygong@cug.edu.cn

Email :

教师其他联系方式Other Contact Information

邮箱 :

扫描关注

个人简介Personal Profile

本人每年可招收博士研究生1名,硕士研究生3名。欢迎对"智能计算及其相关应用"感兴趣的同学发邮件到wygong@cug.edu.cn.谢谢。


龚文引,博士,教授,博士生导师,湖北省杰出青年基金获得者。分别于2004年、2007年和2010年在中国地质大学(武汉)计算机学院获得学士、硕士和博士学位。主要研究方向为智能计算及其应用。现担任中国仿真学会理事、湖北省计算机学会副秘书长、ECOLE执委会委员,国际期刊Swarm and Evolutionary Computation、Expert Systems with Applications、Memetic Computing、IJBIC、CSMS编委。主持国家重点研发计划项目课题一项、国家自然科学基金项目3项、教育部博士学科点基金一项。在SCI期刊发表论文140余篇,其中ESI高被引论文7篇,出版专著2部、译著1部。曾获得湖北省自然科学奖二等奖两项(R1、R2)、湖北省教学成果奖二等奖一项(R3)、湖北省优秀博士学位论文奖、湖北省优秀硕士学位论文奖等奖励。


更多信息请访问:https://wewnyin.github.io/wenyingong


曾获得第六届和第七届中国地质大学(武汉)“研究生良师益友”称号。

曾获得首届中国地质大学(武汉)“卓越青年研究生导师”称号。



指导学生发表的部分代表性论文(第一作者均为本人指导的研究生):


Only selected pubs are listed. 


More info & Codes: https://wewnyin.github.io/wenyingong/pubs.htm


  • [27] Y. Li, W. Gong*, and Q. Gu, Transfer task-averaged natural gradient for efficient many-task optimization, IEEE Transactions on Evolutionary Computation, Sept. 2024, Accepted.

  • [26] Y. Wang, C. Hu, F. Ming, Y. Li, W. Gong, and L. Gao, A diversity-enhanced tri-stage framework for constrained multi-objective optimization, IEEE Transactions on Evolutionary Computation, Sept. 2024, Accepted.

  • [25] F. Ming, B. Xue, M. Zhang, W. Gong*, and H. Zhen, Constrained multi-objective optimization via relaxations on both constraints and objectives, IEEE Transactions on Artificial Intelligence, Aug. 2024, Accepted.

  • [24] S. Li, R. Wang, W. Gong, Z. Liao, and L. Wang, A co-evolutionary dual niching differential evolution algorithm for nonlinear equation systems optimization, IEEE Transactions on Emerging Topics in Computational Intelligence, June 2024, Accepted.

  • [23] R. Li, L. Wang, W. Gong*, F. Ming, An evolutionary multitasking memetic algorithm for multi-objective distributed heterogeneous welding flow shop scheduling, IEEE Transactions on Evolutionary Computation, April 2024, Accepted.

  • [22] X. Chu, F. Ming, and W. Gong*, Competitive multitasking for computational resource allocation in evolutionary constrained multi-objective optimization, IEEE Transactions on Evolutionary Computation, March 2024, Accepted.

  • [21] Y. Li and W. Gong*, Multiobjective multitask optimization with multiple knowledge types and transfer adaptation, IEEE Transactions on Evolutionary Computation, Jan. 2024, Accepted.

  • [20] Y. Li, W. Gong*, Z. Hu, and S. Li, A competitive and cooperative evolutionary framework for ensemble of constraint handling techniques, IEEE Transactions on Systems, Man, and Cybernetics: Systems, Dec. 2023, Accepted.

  • [19] Y. Li, W. Gong*, and S. Li, Multitask evolution strategy with knowledge-guided external sampling, IEEE Transactions on Evolutionary Computation, Nov. 2023, Accepted.

  • [18] R. Li, W. Gong*, L. Wang, C. Lu, Z. Pan, and X. Zhuang, Double DQN-based coevolution for green distributed heterogeneous hybrid flowshop scheduling with multiple priorities of jobs, IEEE Transactions on Automation Science and Engineering, Oct. 2023, Accepted.

  • [17] R. Li, W. Gong*, L. Wang, C. Lu, and C. Dong, Co-evolution with deep reinforcement learning for energy-aware distributed heterogeneous flexible job shop scheduling, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 54, no. 1, pp. 201-211, Jan. 2024.

  • [16] F. Ming, W. Gong*, L. Wang, and L. Gao, Constrained multi-objective optimization via multitasking and knowledge transfer, IEEE Transactions on Evolutionary Computation, vol. 28, no. 1, pp. 77-89, Feb. 2024.

  • [15] S. Li, W. Gong*, L. Wang, and Q. Gu, Evolutionary multitasking via reinforcement learning, IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 8, no. 1, pp. 762-775, Feb. 2024.

  • [14] R. Li, W. Gong*, L. Wang, C. Lu, and X. Zhuang, Surprisingly popular-based adaptive memetic algorithm for energy-efficient distributed flexible job shop scheduling, IEEE Transactions on Cybernetics, vol. 53, no. 12, pp. 8013-8023, Dec. 2023.

  • [13] F. Ming, W. Gong*, L. Wang, and L. Gao, A constraint-handling technique for decomposition-based constrained many-objective evolutionary algorithms, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 12, pp. 7783-7793, Dec. 2023.

  • [12] F. Ming, W. Gong*, D. Li, L. Wang, and L. Gao, A competitive and cooperative swarm optimizer for constrained multi-objective optimization problems, IEEE Transactions on Evolutionary Computation, vol. 27, no. 5, pp. 1313-1326, Oct. 2023.

  • [11] F. Ming, W. Gong*, L. Wang, and L. Gao, A constrained many-objective optimization evolutionary algorithm with enhanced mating and environmental selections,  IEEE Transactions on Cybernetics, vol. 53, no. 8, pp. 4934-4946, Aug. 2023.

  • [10] Z. Liao, W. Gong*, and S. Li, Two-stage reinforcement learning-based differential evolution for solving nonlinear equations, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 53, no. 7, pp. 4279-4290, July 2023.

  • [9] H. Zhen, W. Gong*, and L. Wang, Evolutionary sampling agent for expensive problems, IEEE Transactions on Evolutionary Computation, vol. 27, no. 3, pp. 716-727, June 2023.

  • [8] R. Li, W. Gong*, C. Lu, and L. Wang, A learning-based memetic algorithm for energy-efficient flexible job shop scheduling with type-2 fuzzy processing time, IEEE Transactions on Evolutionary Computation, vol. 27, no. 3, pp. 610-620, June 2023. 

  • [7] F. Ming, W. Gong*, and L. Gao, Adaptive auxiliary task selection for multitasking-assisted constrained multi-objective optimization, IEEE Computational Intelligence Magazine, vol. 18, no. 2, pp. 18-30, May 2023.

  • [6] F. Ming, W. Gong*, L. Wang, and L. Gao, Balancing convergence and diversity in objective and decision spaces for multimodal multi-objective optimization, IEEE Transactions on Emerging Topics in Computational Intelligence, vol. 7, no. 2, pp. 474-486, April 2023.

  • [5] H. Zhen, W. Gong*, L. Wang, F. Ming, and Z. Liao, Two-stage data-driven evolutionary optimization for high-dimensional expensive problems, IEEE Transactions on Cybernetics, vol. 53, no. 4, pp. 2368-2379, April 2023. 

  • [4] Z. Zhang, Y. Cai, and W. Gong*, Evolution-driven randomized graph convolutional networks, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 12, pp. 7516-7526, Dec. 2022. 

  • [3] K. Wang, W. Gong*, Z. Liao, and L. Wang, Hybrid niching-based differential evolution with two archives for nonlinear equations system, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 12, pp. 7469-7481, Dec. 2022. 

  • [2] F. Ming, W. Gong*, and L. Wang, A two-stage evolutionary algorithm with balanced convergence and diversity for many-objective optimization, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 52, no. 10, pp. 6222-6234, Oct. 2022. 

  • [1] Z. Liao, W. Gong*, X. Yan, L. Wang, and C. Hu, Solving nonlinear equations system with dynamic repulsion-based evolutionary algorithms. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2020, 50(4): 1590-1601. 



  • 教育经历Education Background
  • 工作经历Work Experience
  • 研究方向Research Focus
  • 社会兼职Social Affiliations
  • 智能计算及其应用

团队介绍Research Group

智能优化与学习

本团队致力于与智能优化与机器学习及其应用相关领域的前沿研究