的个人主页 http://grzy.cug.edu.cn/HuaningQIU
学术成就 (Google Scholar,ORCiD, ResearchID, publons)
创建了独具特色的流体包裹体 40Ar/39Ar 定年技术,广泛应用于各种热液矿床、天然气藏、高压-超高压变质岩、构造石英脉等相关地质流体的高精度 40Ar/39Ar 定年。研究成果发表在 Geology (Qiu et al., 2011)、Earth and Planetary Science Letters (Qiu & Jiang, 2007; Qiu & Wijbrans, 2008) 和 Geochimica et Cosmochimica Acta (Qiu & Wijbrans, 2006; Jiang et al., 2012; Bai et al., 2013)等国际地球科学界重要学术期刊上。
技术创新
研发了全金属超高真空提取流体包裹体装置,创建了流体包裹体 40Ar/39Ar 定年技术。
发明了有机杂气纯化技术与装置,开拓油气成藏40Ar/39Ar年代学研究领域。
研发了高效气体纯化系统,建立了全自动化激光阶段加热 40Ar/39Ar 定年系统。
稀有气体年代学与地球化学研究平台
1. 高精度 40Ar/39Ar 年代学平台
质谱仪: 大型多接收稀有气体质谱仪Isotopx© NGX-600 (2023)。高分辨率、高灵敏度,10个接收器
杯结构:(1) 全法拉第杯 (H3, H1, L1, L3 & L5)
(2) 2个法拉第杯 (H4, H2) 和 3个电子倍增器 (Ax, L2 & L4)
放大器:全部法拉第杯配置ATONA放大器 (优于 1013Ω 高阻放大器)
高分辨率:可把Ar同位素与有机杂质碎片分开
二氧化碳激光加热熔样系统:自主研制,55W Coherent 激光器,移动范围600x100mm
高效气体纯化系统:自主研制
高温电炉熔样系统:自主研制
全金属超高真空提取流体包裹体装置:自主研制
高精度40Ar/39Ar定年:NGX-600 高分辨率、高灵敏度、卓越的ATONA放大器和3个电子倍增器,结合自主研制的高效气体纯化系统,实现高精度 40Ar/39Ar 定年
实验流程全自动化:激光阶段加热、电炉阶段加热和流体包裹体阶段击碎等气体提取系统控制软件与质谱软件协调通讯,实现所有 40Ar/39Ar 定年技术实验流程全自动化
国际 EARTHTIME 组织 40Ar/39Ar 实验室
40Ar/39Ar 定年技术包括:
(1) 单矿物 (或全岩) 激光阶段加热 40Ar/39Ar 定年分析
(2) 单颗粒钾矿物激光阶段加热或全熔分析
(3) 石英流体包裹体 40Ar/39Ar 定年分析
(4) 单矿物电炉定温阶段加热分析与氩扩散研究
2. 激光显微探针 40Ar/39Ar 年代学平台
质谱仪:小型稀有气体质谱仪Thermo Scientific© ARGUS VI (2011)。高灵敏度,6个接收器(5F + 1CDD)
放大器:H2 和 H1分别配置1011Ω 和1012Ω 高阻放大器,Ax、L1 和 L2 均配置 1013Ω 高阻放大器
紫外激光剥蚀系统:高能量193nm激光器Elemental Scientific Lasers© NWR193HE
3. 稀有气体年代学与地球化学示踪平台
质谱仪:大型多接收高分辨稀有气体质谱仪Thermo Scientific© Helix-MC Plus10K (2023)。 高分辨率,10个接收器(5CFM)
4. 四极质谱气体地球化学平台
质谱仪:1. Hiden© HAL 1051-9 PIC 四极质谱仪,配脉冲离子计数电子倍增器
2. SRS© RGA100 四极质谱仪,配法拉第杯和电子倍增器
功能: 测定矿物、流体包裹体中的气体和挥发分
国内定制大跨度二氧化碳激光加热熔样系统(Coherent 激光器,55W,水冷)移动范围600x100mm。
若列表中“直径”(ϕ5.0) 大于光斑 (ϕ2.5),则自动计算圆形路径进行均匀加热。
国际合作
2000-2001: 荷兰阿姆斯特丹自由大学40Ar/39Ar 年代学实验室访问学习,合作导师 J.R. Wijbrans教授。
2002-2010: 与荷兰自由大学J.R. Wijbrans教授共同完成2项荷兰皇家文理科学院国际合作项目。
2009-2015: 中国科学院-荷兰皇家文理科学院联合培养博士生计划(博士生:胡荣国)。
中国地质大学(武汉)全自动化 40Ar/39Ar 年代学实验室,是国际 EARTHTIME 40Ar/39Ar 实验室 之一。
毕业研究生(部分)
蒋映德,2004级硕士生,中国科学院广州地球化学研究所研究员,中国科学院“百人计划”(2015), 国家自然科学基金优秀青年科学基金(2021)
王 强,2007级博士生,中国石油大学(华东)教授
云建兵,2007级博士生,大庆油田有限责任公司
胡荣国,2009级博士生,桂林理工大学副教授
白秀娟,2011级博士生,中国地质大学(武汉)副研究员
主要论著(通讯作者*, Google Scholar,ORCiD, ResearchID )
Zhao, L.M., Li, Y.L., Cheng, S., Li, Z.Y., Zheng, J.P., Qiu, H.N., Bai, X.J., Xiao, W.J. and Brouwer, F.M. (2024). Geochronology and geochemistry of early Paleozoic magmatism in the Qilian orogen: Constraints on closure of the Proto-Tethys Ocean. Gondwana Res., 126, 223-242. https://doi.org/10.1016/j.gr.2023.10.006
Ning, J., Jiang, Y.D., Schulmann, K., Wang, S., Li, P.F., Shi, S. and Qiu, H.N. (2023). Silurian-Devonian Lithospheric Thinning and Thermally Softening Along the Northern Margin of the Tarim Craton: Geological Mapping, Petro-Structural Analysis and Geochronological Constraints. Tectonics, 42(9), e2023TC007792. https://doi.org/10.1029/2023tc007792
Wu, Y., Bai, X.J., Shi, H.S., He, L.Y. and Qiu, H.N.*, 2023. Dating of authigenic minerals in sedimentary rocks: A review. Earth-Sci. Rev., 241, 104443. https://doi.org/10.1016/j.earscirev.2023.104443
Zhang, T., Zhang, D.H.*, Liu, X.C., Qiu, H.N.*, Zhang, J.L. and Liu, Y.B., 2023. Petrogenesis of high heat production granite in eastern Hebei Province, China: Constraints from geochronology, geochemistry and Sr-Nd-Hf-O isotopes. Lithos, 436-437, 106974. https://doi.org/10.1016/j.lithos.2022.106974
Hu, R.G., Pang, B.C., Bai, X.J., Brouwer, F.M., Bai, L.A., Liu, X.J., Li, Y.Q., Xu, J.Q. and Qiu, H.N., 2022. Progressive crushing 40Ar/39Ar dating of a gold-bearing quartz vein from the Liaotun Carlin-type gold deposit, Guangxi, southern China. Scientific Reports, 12(1): 12793. https://doi.org10.1038/s41598-022-17061-x
Bai, X.J., Liu, M., Hu, R.G., Fang, Y., Liu, X., Tang, B., Qiu, H.N.*, 2022. Well-Constrained Mineralization Ages by Integrated 40Ar/39Ar and U-Pb Dating Techniques for the Xitian W-Sn Polymetallic Deposit, South China. Econ. Geol. 117(4): 833–852. https://doi.org/10.5382/econgeo.4889.
Bui, D.C., Qiu, H.N.*, Ngo, X.D., Bai, X.J.*, Wu, Y., 2022. Dating of granite-related tin mineralisation at Quy Hop, Vietnam: Constraints from zircon and cassiterite U–Pb and muscovite 40Ar/39Ar geochronology. Ore Geology Reviews, 143: 104785. https://doi.org/10.1016/j.oregeorev.2022.104785
Xiao, M., Jiang, Y.D., Zhao, G.C., Qiu, H.N., Cai, Y., Bai, X.J., Yuan, C., Zhang, W.F., Kong, L.Z., Wang, S., 2022. Fluid inclusion 40Ar/39Ar geochronology of andalusite from syn-tectonic quartz veins: New perspectives on dating deformation and metamorphism in low-pressure metamorphic belts. Geochim. Cosmochim. Acta 323, 141–163. https://doi.org/10.1016/j.gca.2022.01.025
Xiao, M., Jiang, Y.D.*, Qiu, H.N.*, Cai, Y., Zhang, W.F., 2022. An improved gas extraction model during stepwise crushing: New perspectives on fluid geochronology and geochemistry. Ore Geol. Rev., 104588. https://doi.org/10.1016/j.oregeorev.2021.104588.
Li, Y.L., Xiang, H., Zheng, J.P., Qiu, H.N., Bai, X.J. and Brouwer, F.M., 2022. Petrology and P-T-t Path of Huangyuan Group and Maxianshan Group in the Central Qilian Block, NW China: Implications for Tectonic Evolution of the Proto-Tethys Ocean. J. Petrol., 63(8), egac077. https://doi.org/10.1093/petrology/egac077
Xue, Z.H., Lin, W., Chu, Y., Faure, M., Chen, Y., Ji, W.B. and Qiu, H.N., 2022. An intracontinental orogen exhumed by basement-slice imbrication in the Longmenshan Thrust Belt of the Eastern Tibetan Plateau. Geol. Soc. Am. Bull., 134(1-2), 15–38. https://doi.org/10.1130/b35826.1
Xiao, M., Qiu, H.N.*, Cai, Y., Jiang, Y.D.*, Zhang, W.F., Fang, Y., 2021. Progressively released gases from fluid inclusions reveal new insights on W-Sn mineralization of the Yaogangxian tungsten deposit, South China. Ore Geol. Rev. 138. https://doi.org/10.1016/j.oregeorev.2021.104353.
Schaen, A.J., Jicha, B.R., Hodges, K.V., Vermeesch, P., Stelten, M.E., Mercer, C.M., Phillips, D., Rivera, T.A., Jourdan, F., Matchan, E.L., Hemming, S.R., Morgan, L.E., Kelley, S.P., Cassata, W.S., Heizler, M.T., Vasconcelos, P.M., Benowitz, J.A., Koppers, A.A.P., Mark, D.F., Niespolo, E.M., Sprain, C.J., Hames, W.E., Kuiper, K.F., Turrin, B.D., Renne, P.R., Ross, J., Nomade, S., Guillou, H., Webb, L.E., Cohen, B.A., Calvert, A.T., Joyce, N., Ganerød, M., Wijbrans, J.R., Ishizuka, O., He, H.Y., Ramirez, A., Pfänder, J.A., Lopez Martínez, M., Qiu, H.N., Singer, B.S., 2021. Interpreting and reporting 40Ar/39Ar geochronologic data. GSA Bulletin 133, 461‒487. https://doi.org/10.1130/b35560.1.
He, C.G., Li, J.W., Zu, B., Liu, W.J., Qiu, H.N., Bai, X.J., 2021. Sericite 40Ar/39Ar and zircon U-Pb dating of the Liziyuan gold deposit, West Qinling orogen, central China: Implications for ore genesis and tectonic setting. Ore Geol. Rev. 139. https://doi.org/10.1016/j.oregeorev.2021.104531.
Hu, R.G., Wijbrans, J.R., Brouwer, F.M., Bai, X.J., Qiu, H.N., 2020. Constraints on retrograde metamorphism of UHP eclogites in North Qinling, Central China, from 40Ar/39Ar dating of amphibole and phengite. Gondwana Res. 87, 83–106. https://doi.org/10.1016/j.gr.2020.06.003.
Bai X.J., Hu R.G., Jiang Y.D., Liu X., Tang B. & Qiu H.N.*, 2019. Refined insight into 40Ar/39Ar progressive crushing technique from K–Cl–Ar correlations in fluid inclusions. Chemical Geology, 515: 37‒49. https://doi.org/10.1016/j.chemgeo.2019.03.037.
Xiao M., Qiu H.N.*, Jiang Y.D.*, Cai Y., Bai X.J., Zhang W.F., Liu M. & Qin C.J., 2019. Gas release systematics of mineral-hosted fluid inclusions during stepwise crushing: implications for 40Ar/39Ar geochronology of hydrothermal fluids. Geochimica Et Cosmochimica Acta, 251: 36‒55. https://doi.org/10.1016/j.gca.2019.02.016.
邱华宁,白秀娟. 2019. 流体包裹体 40Ar/39Ar 定年技术与应用. 地球科学,44(3): 685‒697. https://doi.org/10.3799/dqkx.2019.007
Bai X.J., Jiang Y.D., Hu R.G., Gu X.P. & Qiu H.N.*, 2018, Revealing mineralization and subsequent hydrothermal events: Insights from 40Ar/39Ar isochron and novel gas mixing lines of hydrothermal quartzs by progressive crushing: Chemical Geology, 483: 332‒341. https://doi.org/10.1016/j.chemgeo.2018.02.039.
Bai X.J., Wang M., Jiang Y.D. & Qiu H.N.*, 2013, Direct dating of tin-tungsten mineralization of the Piaotang tungsten deposit, South China, by 40Ar/39Ar progressive crushing: Geochimica et Cosmochimica Acta, 114: 1‒12. https://doi.org/10.1016/j.gca.2013.03.022.
Jiang Y.D., Qiu H.N.* & Xu Y.G., 2012, Hydrothermal fluids, argon isotopes and mineralization ages of the Fankou Pb-Zn deposit in south China: Insights from sphalerite 40Ar/39Ar progressive crushing: Geochimica et Cosmochimica Acta, 84: 369‒379. https://doi.org/10.1016/j.gca.2012.01.044.
Qiu H.N.*, Wu H.Y., Yun J.B., Feng Z.H., Xu Y.G., Mei L.F. & Wijbrans J.R., 2011, High-precision 40Ar/39Ar age of the gas emplacement into the Songliao Basin: Geology, 39: 451‒454. https://doi.org/10.1130/g31885.1.
Qiu H.N.*, Wijbrans J.R., Brouwer F.M., Yun J.B., Zhao L.H. & Xu Y.G., 2010, Amphibolite facies retrograde metamorphism of the Zhujiachong eclogite, SE Dabieshan: 40Ar/39Ar age constraints from argon extraction using UV-laser microprobe, in vacuo crushing and stepwise heating: Journal of Metamorphic Geology, 28: 477‒487. https://doi.org/10.1111/j.1525-1314.2010.00875.x.
Yun J.B., Shi H.S., Zhu J.Z., Zhao L.H. & Qiu H.N.*, 2010, Dating petroleum emplacement by illite 40Ar/39Ar laser stepwise heating: AAPG Bulletin, 94: 759‒771. https://doi.org/10.1306/10210909102.
Qiu H.N.* & Wijbrans J.R., 2008, The Paleozoic metamorphic history of the Central Orogenic Belt of China from40Ar/39Ar geochronology of eclogite garnet fluid inclusions: Earth and Planetary Science Letters, 268: 501‒514. https://doi.org/10.1016/j.epsl.2008.01.042.
Qiu H.N.* & Jiang Y.D., 2007, Sphalerite 40Ar/39Ar progressive crushing and stepwise heating techniques: Earth and Planetary Science Letters, 256: 224‒232. https://doi.org/10.1016/j.epsl.2007.01.028.
Qiu H.N.* & Wijbrans J.R., 2006, Paleozoic ages and excess 40Ar in garnets from the Bixiling eclogite in Dabieshan, China: New insights from 40Ar/39Ar dating by stepwise crushing: Geochimica et Cosmochimica Acta, 70: 2354‒2370. https://doi.org/10.1016/j.gca.2005.11.030.
邱华宁 & 彭良, 1997, 40Ar–39Ar年代学与流体包裹体定年: 合肥, 中国科学技术大学出版社, 242 p.
Qiu H.N., 1996, 40Ar–39Ar dating of the quartz samples from two mineral deposits in western Yunnan (SW China) by crushing in vacuum: Chemical Geology, 127: 211‒222. https://doi.org/10.1016/0009-2541(95)00093-3.
Ar-Ar定年交流QQ群:527760590