刘邓 (副教授)

副教授 硕士生导师

曾获荣誉:2014年湖北省优秀博士学位论文

性别:男

毕业院校:中国地质大学(武汉)

学历:博士研究生

学位:理学博士学位

所在单位:环境学院

入职时间:2012-12-27

学科:生物科学

联系方式:湖北省武汉市东湖新技术开发区锦城街68号,中国地质大学(武汉)环境学院,邮编430078

Email:

个人简历

刘邓,男,湖北随州人,理学博士,副教授,硕士生导师, 地大学者青年优秀人才。

2009.2-2009.82010.10-2012.10美国迈阿密大学(Miami University)地质与环境地球科学系联合培养博士生。2019.3-2020.1赴法国索邦大学(Sorbonne Université,原巴黎第六大学)矿物、材料物理与宇宙化学研究所开展合作研究。主要从事地质微生物与生物地球化学的教学和研究工作,利用现代微生物技术、矿物表征和地球化学检测等交叉手段探究微生物驱动的地表元素循环(如,和铁等)以及微生物矿化过程。先后主持国家自然科学基金面上项目、青年基金项目、中国博士后基金面上项目和中国地质大学摇篮计划等科研项目6项。发表学术论文四十余篇,其中以第一作者/通讯作者身份发表SCI论文14篇(Geochimica et Cosmochimica Acta论文3篇,Chemical Geology论文5篇,ESI高被引论文1篇)。


研究兴趣:

微生物-矿物相互作用及其地质意义

基于微生物矿化的重金属去除技术

微生物化石


讲授课程:

《普通生物学》、《生物地球化学》


工作经历:

2012.12-2016.1,中国地质大学(武汉)环境科学与工程博士后流动站,博士后

2013.5-2016.6,中国地质大学(武汉)环境学院,特任副教授

2016.6-今,中国地质大学(武汉)环境学院,副教授


主持科研项目:

国家自然科学基金面上项目,埋藏成岩过程中生物成因原白云石演化的模拟研究,2018-2021

国家自然科学基金面上项目,硫酸盐型盐湖中好氧微生物介导的白云石沉淀过程及其机理,2016

国家自然科学基金青年基金项目,盐湖嗜碱菌作用下粘土矿物结构铁的还原过程及其矿物转变机理,2014-2016

中央高校基本科研业务专项资金“摇篮计划”,Na2SO4型盐湖沉积物中自生白云石的微生物成因研究,2015-2017

中国博士后科学基金面上资助项目,静水高压条件下铁还原微生物与蒙皂石相互作用,2013

中央高校基本科研业务专项资金新青年教师科研启动基金,0.1-20 MPa静水压力条件下微生物介导的蒙皂石结构铁还原过程,2014-2015


发表论文:

第一作者和通讯作者论文 *通讯作者)

[1] Liu, D.*, Fan, Q., Papineau, D., Yu, N., Chu, Y., Wang, H., Qiu, X., Wang, X., Precipitation of protodolomite facilitated by sulfate-reducing bacteria: The role of capsule extracellular polymeric substances. Chemical Geology, 2020, 533, 119415.

[2] Liu, D.*, Xu, Y., Yu, Q., Yu, N., Qiu, X., Wang, H., Papineau, D., Catalytic effect of microbially-derived carboxylic acids on the precipitation of Mg-calcite and disordered dolomite: Implications for sedimentary dolomite. Journal of Asian Earth Sciences, 2020, 193, 104301.

[3] Liu, D.*, Yu, N., Papineau, D., Fan, Q., Wang, H.*, Qiu, X., She, Z., Luo, G., The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolia, China. Geochimica et Cosmochimica Acta, 2019, 263, 31-49.

[4] Liu, D.*, Xu, Y., Papineau, D., Yu, N., Fan, Q., Qiu, X., Wang, H.*, Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals. Geochimica et Cosmochimica Acta, 2019, 247, 83-95. (ESI高被引论文)

[5] Liu, D.*, Zhang, Q., Wu, L., Zeng, Q., Dong, H., Bishop, M.E., Wang, H.*, Humic acid-enhanced illite and talc formation associated with microbial reduction of Fe(III) in nontronite. Chemical Geology, 2016, 447, 199-207.

[6] Liu, D.*, Wang F., Dong, H., Wang, H., Zhao, L., Huang, L., Wu, L., Biological reduction of structural Fe(III) in smectites by a marine bacterium at 0.1 and 20 MPa. Chemical Geology, 2016, 438, 1-10.

[7] Liu, D.*, Dong, H., Agrawal, A., Singh, R., Zhang, J., Wang, H., Inhibitory effect of clay mineral on methanogenesis by Methanosarcina mazei and Methanothermobacter thermautotrophicus, Applied Clay Science, 2016, 126, 25-32.

[8] Liu, D., Dong, H.*, Wang, H.*, Zhao, L., Low-temperature feldspar and illite formation through bioreduction of Fe(III)-bearing smectite by an alkaliphilic bacterium, Chemical Geology, 2015, 406, 25-33.

[9] Liu, D., Dong, H.*, Zhao, L., Wang, H.*, Smectite reduction by Shewanella species as facilitated by cystine and cysteine, Geomicrobiology Journal, 2014, 31, 53-63.

[10] Liu, D., Dong, H.*, Bishop, M., Zhang, J., Wang, H.*, Xie, S., Wang, S., Huang, L., Eberl, D., Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium, Geobiology, 2012, 10(2), 150-162.

[11] Liu, D., Dong, H.*, Bishop, ME., Wang, H.*, Agrawal, A., Tritschler, S., Eberl, D., Xie, S., Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeri, Geochimica et Cosmochimica Acta, 2011, 75(4), 1057-1071.

[12] Liu, D., Wang, H.*, Dong, H.*, Qiu, X., Xie, S., Dong, X., Cravotta III, C., Mineral transformation associated with goethite reduction by Methanosarcina barkeri, Chemical Geology, 2011, 288(1-2), 53-60.

[13] Liu, D., Wang, H.*, Qiu, X., Dong, H.*, Comparison of reduction extent of Fe(III) in nontronite by Shewanella putrefaciens and Desulfovibrio vulgaris, Journal of Earth Science, 2010, 21(1), 297-299.

[14] Liu, D., Yang, X., Wang, H.*, Li, J., Su, N., Impact of montmorillonite and calcite on release and adsorption of cyanobacterial fatty acids at ambient temperature, Journal of China University of Geosciences, 2008, 19(5), 526-533.

[15] 许杨阳, 刘邓*, 于娜, 邱轩, 王红梅. 微生物(有机)白云石成因模式研究进展与思考.地球科学, 2018, 43(S1),63-70.

[16] 于娜, 许杨阳, 刘邓*, 邱轩, 范奇高, 王红梅. 内蒙古吉布胡郎图诺尔盐湖厌氧菌对白云石形成的催化作用. 地球科学, 2018, 43(S1),53-62.

[17] 张千帆, 曾强, 刘邓*, 王红梅. 腐殖酸对微生物还原绿脱石结构Fe(III)的促进作用. 地质科技情报, 2016, 35(6), 205-211.


其他合作论文

[1] Li, J., Pancost, R.D., Naffs, B.D.A., Yang, H., Liu, D., Gong, L., Xie, S., Multiple environmental and ecological controls on archael ether lipid distributions in saline ponds. Chemical Geology, 2019,529, 119293.

[2] Wang, C., Bendle, J.A., Zhang, H., Yang, Y., Liu, D., Huang, J., Cui, J., Xie, S., Holocene temperature and hydrological changes reconstructed by bacterial 3-hydroxy fatty acids in stalagmite from central China. Quaternary Science Reviews, 2018, 192, 97-105.

[3] Chen, R., Liu, H., Tong, M., Zhao, L., Zhang, P., Liu, D., Yuan, S., Impact of Fe(II) oxidation in the presence of iron-reducing bacteria on subsequent Fe(III) bio-reduction. Science of the Total Environment, 2018, 639, 1007-1014.

[4] Li, J., Naafs, B.D.A., Pancost, R.D., Yang, H., Liu, D., Xie, S., Distribution of branched tetraether lipids in ponds from Inner Mongolia, NE China: Insight into the source of brGDGTs, Organic Geochemistry, 2017, 112, 127-136.

[5] Liu, X., Yuan, S., Tong, M., Liu, D., Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite, Water Research, 2017, 113, 72-79.

[6] Xie, S., Liu, D., Qiu, X., Huang, X., Algeo, T.J., Microbial roles equivalent to geological agents of high temperature and pressure in deep Earth, Science China Earth Sciences, 2016, 59(11), 2098-2104.

[7] Tong, M., Yuan, S., Ma, S., Jin, M., Liu, D., Cheng, D., Liu, X., Gan, Y., Wang, Y., Production of abundant hydroxyl radicals from oxygenation of subsurface sediments, Environmental Science & Technology, 2016, 50(1), 214-221.

[8] Singh, R., Dong, H., Liu, D., Zhao, L., Marts, AR., Farquhar, E., Tierney, DL., Almquist, CB., Briggs, BR., Reduction of hexacalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus, Geochimica et Cosmochimica Acta, 2015, 148, 442-456.

[9] Singh, R., Dong, H., Liu, D., Marts, A.R., Tierney, D.L., Almquist, C.B., [Cobalt(III)-EDTA]- reduction by thermophilic methanogen Methanothermobacter thermautotrophicus, Chemical Geology, 2015, 411, 49-56.

[10] Luo, G., Xie, S., Liu, D., Algeo, TJ., Microbial influences on paleoenvironmental changes during the Permian-Triassic boundary crisis, Science China Earth Sciences, 2014, 57, 965-975.

[11] Zhao, L., Dong, H., Kukkadapu, R., Agrawal, A., Liu, D., Zhang, J., Edelmann, RE., Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction byPseudogulbenkiania sp. strain 2002, Geochimica et Cosmochimica Acta, 2013, 119, 231-247.

[12] Zhang, J., Dong, H., Liu, D., Agrawal, A., Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus, Geochimica et Cosmochimica Acta, 2013, 106, 203-215.

[13] Zhang, J., Dong, H., Liu, D., Fisher, TB., Wang, S., Huang, L., Microbial reduction of Fe(III) in smectite-illite minerals by methanogen Methanosarcina mazei, Chemical Geology, 2012, 292-293, 35-44.

[14] Qiu, X., Wang, H., Liu, D., Gong, L., Wu, X., Xiang, X., The physiological response of Synechococcus elongatus to salinity: A potential biomarker for ancient salinity in evaporative environments, Geomicrobiology Journal, 2012, 29(5), 477-483.

[15] Xie, S., Yang, H., Luo, G., Huang, X., Liu, D., Wang, Y., Gong, Y., Xu, R., Geomicrobial functional groups: A window to the interaction between life and environments, Chinese Science Bulletin, 2012, 57, 2-19.

[16] Wang, S., Dong, RM., Dong, CZ., Huang, L., Jiang, H., Wei, Y., Feng, L., Liu, D., Yang, G., Zhang, C., Dong, H., Diversity of microbial plankton across the Three Gorges Dams of the Yangtze River, China, Geoscience Frontiers, 2012, 3, 335-349.

[17] Li, J., Yang, H., Liu, D., Huang, J., Comparative analysis of lipids in Funaria hygrometrica Hdew from different habitats, Journal of Earth Science, 2010, 21(1), 247-249.

[18] Wang, H., Zeng, C., Liu, Q., Liu, D., Qiu, X., Gong, L., Calcium carbonate precipitation induced by a bacterium strain isolated from an oligotrophic cave in Central China, Frontiers of Earth Science in China, 2010, 4(2), 148-151.

[19] Wang, H., Ma, X., Liu, D., Yang, X., and Li, J., Chemical variation from biolipids to sedimentary organic matter in modern oceans and its implication to the geobiological evaluation of ancient hydrocarbon source rocks, Frontiers of Earth Science in China, 2007, 1(4), 399-404.

[20] 张蔚, 胡小丽, 邱轩, 刘邓, 冯亮, 马丽媛, 胡婧, 王红梅. 山东胜利油田沾3油藏微生物组特征. 科学通报, 2019, 64(18), 1930-1942.

[21] 胡小丽, 张蔚, 刘邓, 邱轩, 王红梅. 油藏嗜热菌与膨润土的相互作用及其对储层防膨的意义. 微生物学报, 2019, 59(6), 1197-1208.

[22] 谢树成, 殷鸿福, 刘邓, 邱轩. 再谈古生物学向地球生物学的发展. 地球科学, 2018, 43(11), 3823-3836.

[23] 王红梅, 刘烁, 刘邓. 硫酸盐还原菌及异化铁还原菌对黄钾铁矾还原作用的对比. 地球科学, 2015, 40(2),305-316.

[24] 王红梅, 吴晓萍, 邱轩, 刘邓. 微生物成因的碳酸盐矿物研究进展. 微生物学通报, 2013, 40(1), 180-189.

[25] 王红梅, 马相如, 刘邓, 杨小芬, 李继红. 从生物脂类化合物到沉积有机质的变化及其对正演烃源岩有机质形成的启示. 地球科学, 2007, 32(6), 748-754.


期刊审稿

Environmental Science & Technology, Chemical Geology, Geobiology, Science of the Total Environment, Journal of Geophysical Research-Biogeosciences, Applied Clay Science, Clay and Clay Minerals, Science China Earth Sciences, Marine Chemistry, Frontier of Earth Science


研究生培养

张千帆(2013-2016;联合指导)

于娜(2015-2018),许杨阳(2015-2018;联合指导)

范奇高(2017级,在读),杨珊珊(2018级,在读),郑威莉(2019级,在读)