刘邓 (教授)

教授 博士生导师 硕士生导师

曾获荣誉:国家级青年人才计划获得者(2022年);湖北省优秀博士学位论文(2013年);校第十二届青年教师教学竞赛一等奖(2021年)

性别:男

毕业院校:中国地质大学(武汉)

学历:博士研究生

学位:理学博士学位

所在单位:环境学院

学科:生物科学 环境工程

联系方式:湖北省武汉市东湖新技术开发区锦程街68号,中国地质大学(武汉)环境学院,邮编430078

Email:

个人简历

刘邓,湖北随州人,博士,现任中国地质大学(武汉)环境学院教授、博士生导师,生物地质与环境地质国家重点实验室固定成员,校“地大学者”学科骨干人才,国家级青年人才计划入选者


2009.2-2009.8及2010.10-2012.9美国迈阿密大学(Miami University)地质与环境地球科学系联合培养博士生。2019.3-2020.1赴法国索邦大学(Sorbonne Université,原巴黎第六大学)矿物、材料物理与宇宙化学研究所开展合作研究。主要从事地质微生物学、生物矿物学以及生物地球化学的教学和研究工作,利用多学科交叉研究手段,阐释微生物与矿物的交互作用过程、分子机理以及地质环境效应,包括:1)微生物调控矿物的结晶、分解和转化过程与机制;2)微生物成因矿物的环境属性;3)矿物对微生物代谢活性及环境适应性的影响。


主持国家自然科学基金面上项目、青年基金项目、中国博士后基金面上项目等多项科研项目。参编教材2部、专著4部,发表学术论文60余篇(Nature Index期刊论文10篇)。


研究兴趣

微生物—矿物相互作用及其地质环境效应

微生物对极端环境的响应机制

基于微生物矿化的重金属去除技术


讲授课程

本科生: 《普通生物学》、《生物地球化学》、《生态学概论》、《地球科学概论》(参与)、《北戴河专业认识实习》

研究生:《生物地质学》(参与)、《地质微生物学》(参与)、《现代生物学及研究方法》(参与)


工作经历

2020.12-今,中国地质大学(武汉)环境学院,教授

2016.06-2020.11,中国地质大学(武汉)环境学院,副教授

2013.05-2016.05,中国地质大学(武汉)环境学院,特任副教授

2013.01-2016.01,中国地质大学(武汉)环境学院,师资博士后


主持项目

  • 国家级青年人才项目(2023-2025)

  • 国家重点研发计划项目子课题(2023-2026)

  • 国家自然科学基金面上项目(2023-2026)

  • 国家自然科学基金面上项目(2018-2021)

  • 国家自然科学基金面上项目(2016-2016

  • 国家自然科学基金青年基金项目(2014-2016)

  • 中石油科学研究与技术开发项目(2021-2023

  • 中央高校基本科研业务专项资金“摇篮计划”(2015-2017

  • 中央高校基本科研业务专项资金新青年教师科研启动基金2014-2015

  • 中国博士后科学基金面上资助项目(2013


以第一及通讯作者身份发表论文*通讯作者)

[1] Yin, Y., Liu, J., Yang, S., Wang, P., Zhu, Z., Wang, H., Wang, H., Liu, D.*, The influence of montmorillonite on the mineralogical and magnetic changes in magnetite and maghemite during microbial iron reduction. Chemical Geology, 2024, 648, 121941. 

[2] Liu, D.*, Cao, J., Yang, S., Yin, Y., Wang, P., Papineau, D., Wang, H., Qiu, X., Luo, G., Zhu, Z., Wang, F., Microbially-mediated formation of Ca-Fe carbonates during dissimilatory ferrihydrite reduction: Implications for the origin of sedimentary ankerite. SCIENCE CHINA Earth Sciences, 2024, 67(1), 208-221

[3] Yang, S., Liu, D.*, Zheng, W., Fan, Q., Wang, H., Zhao, L., Microbial reduction and alteration of Fe(III)-containing smectites in the presence of biochar-derived dissolved organic matter. Applied Geochemistry, 2023, 105661. 

[4] Fan, Q., Liu, D.*, Papineau, D., Qiu, X., Wang, H., She, Z., Zhao, L., Precipitation of high Mg-calcite and protodolomite using dead biomass of aerobic halophilic bacteria. Journal of Earth Science, 2023, 34, 456-466.

[5] Wang, P., Shi, T., Mehta, N., Yang, S., Wang, H., Liu, D.*, Zhu, Z.*, Changes in magnetic properties of magnetite nanoparticles upon microbial iron reduction. Geochemistry Geophysics Geosystems, 2022, e2021GC010212. 

[6] Zheng, W., Liu, D.*, Yang, S., Fan, Q., Papineau, D., Wang, H., Qiu, X., Chang, B., She, Z., Transformation of protodolomite to dolomite proceeds under dry-heating conditions. Earth and Planetary Science Letters, 2021, 576, 117249.

[7] Bai, H., Liu, D.*, Zheng, W., Ma, L., Yang, S., Cao, J., Lu, X., Wang, H., Mehta, N., Microbially-induced calcium carbonate precipitation by a halophilic ureolytic bacterium and its potential for remediation of heavy metal-contaminated saline environments. International Biodeterioration & Biodegradation, 2021, 165, 105311. 

[8] Liu, D.*, Fan, Q., Papineau, D., Yu, N., Chu, Y., Wang, H., Qiu, X., Wang, X., Precipitation of protodolomite facilitated by sulfate-reducing bacteria: The role of capsule extracellular polymeric substances. Chemical Geology, 2020, 533, 119415.

[9] Liu, D.*, Xu, Y., Yu, Q., Yu, N., Qiu, X., Wang, H., Papineau, D., Catalytic effect of microbially-derived carboxylic acids on the precipitation of Mg-calcite and disordered dolomite: Implications for sedimentary dolomite. Journal of Asian Earth Sciences, 2020, 193, 104301.

[10] Liu, D.*, Yu, N., Papineau, D., Fan, Q., Wang, H.*, Qiu, X., She, Z., Luo, G., The catalytic role of planktonic aerobic heterotrophic bacteria in protodolomite formation: Results from Lake Jibuhulangtu Nuur, Inner Mongolia, China. Geochimica et Cosmochimica Acta, 2019, 263, 31-49.

[11] Liu, D.*, Xu, Y., Papineau, D., Yu, N., Fan, Q., Qiu, X., Wang, H.*, Experimental evidence for abiotic formation of low-temperature proto-dolomite facilitated by clay minerals. Geochimica et Cosmochimica Acta, 2019, 247, 83-95. 

[12] Liu, D.*, Zhang, Q., Wu, L., Zeng, Q., Dong, H., Bishop, M.E., Wang, H.*, Humic acid-enhanced illite and talc formation associated with microbial reduction of Fe(III) in nontronite. Chemical Geology, 2016, 447, 199-207.

[13] Liu, D.*, Wang F., Dong, H., Wang, H., Zhao, L., Huang, L., Wu, L., Biological reduction of structural Fe(III) in smectites by a marine bacterium at 0.1 and 20 MPa. Chemical Geology, 2016, 438, 1-10.

[14] Liu, D.*, Dong, H., Agrawal, A., Singh, R., Zhang, J., Wang, H., Inhibitory effect of clay mineral on methanogenesis by Methanosarcina mazei and Methanothermobacter thermautotrophicusApplied Clay Science, 2016, 126, 25-32.

[15] Liu, D., Dong, H.*, Wang, H.*, Zhao, L., Low-temperature feldspar and illite formation through bioreduction of Fe(III)-bearing smectite by an alkaliphilic bacterium, Chemical Geology, 2015, 406, 25-33.

[16] Liu, D., Dong, H.*, Zhao, L., Wang, H.*, Smectite reduction by Shewanella species as facilitated by cystine and cysteine, Geomicrobiology Journal, 2014, 31, 53-63.

[17] Liu, D., Dong, H.*, Bishop, M., Zhang, J., Wang, H.*, Xie, S., Wang, S., Huang, L., Eberl, D., Microbial reduction of structural iron in interstratified illite-smectite minerals by a sulfate-reducing bacterium, Geobiology, 2012, 10(2), 150-162.

[18] Liu, D., Dong, H.*, Bishop, ME., Wang, H.*, Agrawal, A., Tritschler, S., Eberl, D., Xie, S., Reduction of structural Fe(III) in nontronite by methanogen Methanosarcina barkeriGeochimica et Cosmochimica Acta, 2011, 75(4), 1057-1071.

[19] Liu, D., Wang, H.*, Dong, H.*, Qiu, X., Xie, S., Dong, X., Cravotta III, C., Mineral transformation associated with goethite reduction by Methanosarcina barkeriChemical Geology, 2011, 288(1-2), 53-60.

[20] Liu, D., Wang, H.*, Qiu, X., Dong, H.*, Comparison of reduction extent of Fe(III) in nontronite by Shewanella putrefaciens and Desulfovibrio vulgarisJournal of Earth Science, 2010, 21(1), 297-299.

[21] Liu, D., Yang, X., Wang, H.*, Li, J., Su, N., Impact of montmorillonite and calcite on release and adsorption of cyanobacterial fatty acids at ambient temperature, Journal of China University of Geosciences, 2008, 19(5), 526-533.

[22] 曹锦鹏, 邱轩, 马丽媛, 刘邓*. 微生物诱导碳酸盐沉淀对水体磷的去除作用. 环境科学与技术, 2023, 46(12), 51-57.

[23] 许杨阳, 刘邓*, 于娜, 邱轩, 王红梅. 微生物(有机)白云石成因模式研究进展与思考.地球科学, 2018, 43(S1),63-70.

[24] 于娜, 许杨阳, 刘邓*, 邱轩, 范奇高, 王红梅. 内蒙古吉布胡郎图诺尔盐湖厌氧菌对白云石形成的催化作用. 地球科学, 2018, 43,53-62.

[25] 张千帆, 曾强, 刘邓*, 王红梅. 腐殖酸对微生物还原绿脱石结构Fe(III)的促进作用. 地质科技情报, 2016, 35(6), 205-211.

[26] 刘邓*, 许杨阳, 向兴, 王红梅. 内蒙古硫酸盐型盐湖中好氧微生物介导的白云石沉淀过程及其机理. 吉林大学学报, 2015, 45, 1507-28.

[27] 许杨阳, 刘邓*. 室温条件下琥珀酸对白云石形成的催化作用. 吉林大学学报, 2015, 45, 1507-29.


其他合作论文(*通讯作者)

[28] Xiao, Q., Xia, Z., She, Z. *, Papineau, D., Luo, G., Chang, B., Liu, D., Mason, R., Li, M., Li, C., Ubiquitous occurrence of organogenic dolomite in a late Ediacaran limestone-dominated succession from the Eastern Yangtze Gorges area of South China. Precambrian Research, 2024, 400, 107269.

[29] Luo, G.*, Liu, D., Yang, H., Microbes in mass extinction: An accomplice or a savior. National Science Review, 2024, 11, nwad291.

[30] Gong, Q., Xiang, L., Ye, B., Liu, D., Wang, H., Ma, L., Lu, X.*, Characterization of an antimony-resistant fungus Sarocladium Killiense ZJ-1 and its potential as an antimony bio-remediator. Journal of Hazardous Materials, 2024, 462, 132676.

[31] Liu, R., Ma, L.*, Wang, H., Liu, D., Lu, X., Huang, X., Huang, S., Liu, X. Comparative genomics reveals intraspecific divergence of Acidithiobacillus ferrooxidans: insights from evolutionary adaptation. Microbial Genomics, 2023, 9, 001038.

[32] Li, J.*, Xue, J., Naafs, B.D.A., Yang, Y., Yang, H., Liu, D. Distribution and carbon isotopic composition of disloptene from epiphytic bryophytes in Wuhan, central China. Organic Geochemistry, 2022, 104506.

[33] Huang, Q., Pi, D.*, Jiang, S.*, Liu, D., Yan, H., Mand, K., Kirsimae, K., Bishop, B., Robbins, L.J., Yang, S. The dual role of microbes in the formation of the Malkantu manganese carbonate deposit, NW China: Petrographic, geochemical, and experimental evidence. Chemical Geology, 2022, 120992.

[34] Wu, Y., Xiang, L., Wang, H., Ma, L., Qiu, X., Liu, D., Feng, L., Lu, X*. Transcriptome analysis of an arsenite-/antimonite-oxidizer, Bosea sp. AS-1 reveals the importance of the type 4 secretion system in antimony resistance. Science of the Total Environment, 2022, 826, 154168.

[35] Xiang, L., Liu, C., Liu, D., Ma, L., Qiu, X., Wang, H.*, Lu, X*. Antimony transformation and mobilization from stibnite by an antimonite oxidizing bacterium Bosea sp. AS-1. Journal of Environmental Sciences, 2022, 111, 273-281.

[36] Ma, L., Huang, X., Wang, H.*, Yun, Y., Cheng, X., Liu, D., Lu, X., Qiu, X. Microbial interactions drive distinct taxonomic and potential metabolic responses to habitats in karst cave ecosystem. Microbiology Spectrum, 2021, 9, e01152-21.

[37] Papineau, D.*, Yin, J., Devine, K.G., Liu, D., She, Z. Chemically oscillating reactions during the diagenetic formation of Ediacaran siliceous and carbonate botryoids. Minerals, 2021, 11, 1160.

[38] Chang, B., Li, C.*, Liu, D., Foster, I., Tripati, A., Lloyd, M.K., Maradiaga, I., Luo, G., An, Z., She, Z., Xie, S., Tong, J., Huang, J.*, Algeo, T.J., Lyons, T.W., Immenhauser, A. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”. Proceedings of the National Academy of Sciences, 2020, 117, 14005-14014. 

[39] Li, J., Pancost, R.D., Naffs, B.D.A., Yang, H., Liu, D., Gong, L., Xie, S*. Multiple environmental and ecological controls on archael ether lipid distributions in saline ponds. Chemical Geology, 2019,529, 119293.

[40] Wang, C., Bendle, J.A., Zhang, H., Yang, Y., Liu, D., Huang, J., Cui, J., Xie, S*. Holocene temperature and hydrological changes reconstructed by bacterial 3-hydroxy fatty acids in stalagmite from central China. Quaternary Science Reviews, 2018, 192, 97-105.

[41] Chen, R., Liu, H.*, Tong, M., Zhao, L., Zhang, P., Liu, D., Yuan, S*. Impact of Fe(II) oxidation in the presence of iron-reducing bacteria on subsequent Fe(III) bio-reduction. Science of the Total Environment, 2018, 639, 1007-1014.

[42] Li, J., Naafs, B.D.A., Pancost, R.D., Yang, H., Liu, D., Xie, S*. Distribution of branched tetraether lipids in ponds from Inner Mongolia, NE China: Insight into the source of brGDGTs, Organic Geochemistry, 2017, 112, 127-136.

[43] Liu, X., Yuan, S.*, Tong, M., Liu, D. Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite, Water Research, 2017, 113, 72-79.

[44] Xie, S.*, Liu, D., Qiu, X., Huang, X., Algeo, T.J. Microbial roles equivalent to geological agents of high temperature and pressure in deep Earth, SCIENCE CHINA Earth Sciences, 2016, 59(11), 2098-2104.

[45] Tong, M., Yuan, S.*, Ma, S., Jin, M., Liu, D., Cheng, D., Liu, X., Gan, Y., Wang, Y. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments, Environmental Science & Technology, 2016, 50(1), 214-221.

[46] Singh, R., Dong, H.*, Liu, D., Zhao, L., Marts, AR., Farquhar, E., Tierney, DL., Almquist, CB., Briggs, BR. Reduction of hexacalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus, Geochimica et Cosmochimica Acta, 2015, 148, 442-456.

[47] Singh, R., Dong, H.*, Liu, D., Marts, A.R., Tierney, D.L., Almquist, C.B., [Cobalt(III)-EDTA]- reduction by thermophilic methanogen Methanothermobacter thermautotrophicus, Chemical Geology, 2015, 411, 49-56.

[48] Luo, G.*, Xie, S., Liu, D., Algeo, TJ. Microbial influences on paleoenvironmental changes during the Permian-Triassic boundary crisis, Science China Earth Sciences, 2014, 57, 965-975.

[49] Zhao, L., Dong, H.*, Kukkadapu, R., Agrawal, A., Liu, D., Zhang, J., Edelmann, RE., Biological oxidation of Fe(II) in reduced nontronite coupled with nitrate reduction byPseudogulbenkiania sp. strain 2002, Geochimica et Cosmochimica Acta, 2013, 119, 231-247.

[50] Zhang, J., Dong, H.*, Liu, D., Agrawal, A., Microbial reduction of Fe(III) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus, Geochimica et Cosmochimica Acta, 2013, 106, 203-215.

[51] Zhang, J., Dong, H.*, Liu, D., Fisher, TB., Wang, S., Huang, L., Microbial reduction of Fe(III) in smectite-illite minerals by methanogen Methanosarcina mazei, Chemical Geology, 2012, 292-293, 35-44.

[52] Qiu, X., Wang, H.*, Liu, D., Gong, L., Wu, X., Xiang, X., The physiological response of Synechococcus elongatus to salinity: A potential biomarker for ancient salinity in evaporative environments, Geomicrobiology Journal, 2012, 29(5), 477-483.

[53] Xie, S.*, Yang, H., Luo, G., Huang, X., Liu, D., Wang, Y., Gong, Y., Xu, R., Geomicrobial functional groups: A window to the interaction between life and environments, Chinese Science Bulletin, 2012, 57, 2-19.

[54] Wang, S., Dong, RM., Dong, CZ., Huang, L., Jiang, H.*, Wei, Y., Feng, L., Liu, D., Yang, G., Zhang, C., Dong, H*, Diversity of microbial plankton across the Three Gorges Dams of the Yangtze River, China, Geoscience Frontiers, 2012, 3, 335-349.

[55] Li, J.*, Yang, H., Liu, D., Huang, J., Comparative analysis of lipids in Funaria hygrometrica Hdew from different habitats, Journal of Earth Science, 2010, 21(1), 247-249.

[56] Wang, H.*, Zeng, C., Liu, Q., Liu, D., Qiu, X., Gong, L., Calcium carbonate precipitation induced by a bacterium strain isolated from an oligotrophic cave in Central China, Frontiers of Earth Science in China, 2010, 4(2), 148-151.

[57] Wang, H.*, Ma, X., Liu, D., Yang, X., and Li, J. Chemical variation from biolipids to sedimentary organic matter in modern oceans and its implication to the geobiological evaluation of ancient hydrocarbon source rocks, Frontiers of Earth Science in China, 2007, 1(4), 399-404.

[58] 董海良*, 曾强, 刘邓, 盛益之, 刘晓磊, 刘源. 胡景龙, 李扬, 夏庆银, 李润洁, 胡大福, 张冬磊, 张文慧, 郭东毅, 张晓文, 黏土矿物—微生物相互作用机理以及在环境领域中的应用. 地学前缘, 2024, 31(1), doi: 10. 13745/j.esf.sf.2024.1.19.

[59] 陈秀云, 冯杰, 王红梅, 刘邓, 窦艳芳, 张江华, 马丽媛*. 山西阳泉老窑水硫酸盐还原菌的分离鉴定及其还原功能驯化. 微生物学报, 2022, 62(6), 2104-2118.

[60] 张蔚, 胡小丽, 邱轩, 刘邓, 冯亮, 马丽媛, 胡婧, 王红梅*. 山东胜利油田沾3油藏微生物组特征. 科学通报, 2019, 64(18), 1930-1942.

[61] 胡小丽, 张蔚, 刘邓, 邱轩, 王红梅*. 油藏嗜热菌与膨润土的相互作用及其对储层防膨的意义. 微生物学报, 2019, 59(6), 1197-1208.

[62] 谢树成*, 殷鸿福, 刘邓, 邱轩. 再谈古生物学向地球生物学的发展:服务领域的拓展和创新. 地球科学, 2018, 43(11), 3823-3836.

[63] 王红梅*, 刘烁, 刘邓. 硫酸盐还原菌及异化铁还原菌对黄钾铁矾还原作用的对比. 地球科学, 2015, 40(2), 305-316.

[64] 杜杉杉, 殷科, 韩文, 刘邓, 殷茵. 一种商业名为金丝玉的矿物学特征. 宝石和宝石学杂志, 2014, 16(4), 49-53.

[65] 王红梅*, 吴晓萍, 邱轩, 刘邓. 微生物成因的碳酸盐矿物研究进展. 微生物学通报, 2013, 40(1), 180-189.

[66] 王红梅*, 马相如, 刘邓, 杨小芬, 李继红. 从生物脂类化合物到沉积有机质的变化及其对正演烃源岩有机质形成的启示. 地球科学, 2007, 32(6), 748-754.


期刊审稿

Environmental Science & Technology, Chemical Geology, Geobiology, Applied and Environmental Microbiology, Journal of Hazardous Materials, Science of the Total Environment, Journal of Geophysical Research-Biogeosciences, Applied Clay Science, Geomicrobiology Journal, Clay and Clay Minerals, Journal of Petroleum Science and Engineering, Science Bulletin, Science China Earth Sciences, Marine Chemistry, Geological Journal, Frontier of Earth Science,科学通报,地学前缘等。


在读研究生

博士生:杨珊珊(2021级),来瑞秋(2022级,联合指导),陈婷2022级,联合指导),邓海鹏(2023

硕士生:殷雅婷(2021级),刘胜园(2021级,联合指导),刘佳男(2022级),Muhammad Yousuf2022级),周腾(2023级)戴熙伟(2023级,联合指导)

 

毕业研究生

博士生:王鹏聪(2019级,联合指导)

硕士生:张千帆(2013联合指导),于娜(2015级),许杨阳(2015联合指导),范奇高(2017级),杨珊珊(2018级),郑威莉(2019级),曹锦鹏(2020级),白会(2020级)


学生获奖

2021年校优秀博士创新基金项目:王鹏聪

2021年研究生国家奖学金:白会

2022年校优秀毕业生:郑威莉

2022年国家级大学生创新创业训练计划项目:陈倩、解茂凤、侬娅

2023年校优秀毕业生:白会

2023年校优秀博士论文提名奖:王鹏聪

2023年校优秀本科毕业论文:邓海鹏


本科班主任

043131班、04H236