Zhao Xinfu

Doctoral Degree

Postgraduate (Doctoral)

The University of Hong Kong

Personal Information

Gender:Male
Business Address:主楼824室
E-Mail:

VIEW MORE

Other Contact Information

email :


Personal Information

一、个人简介 

男,1982年生,江苏镇江人。 

2004年6月毕业于中国地质大学(武汉)资源勘查工程基地班,获学士学位;2006年6月获得中国地质大学(武汉) 矿物学、岩石学、矿床学硕士学位,2010年1月获得香港大学矿床学博士学位。2010-2013年在香港大学从事博士后研究工作。2013年4月回母校中国地质大学(武汉)资源学院工作。主要从事热液矿床的成矿作用机理研究,主要研究方向为岩浆热液铁-铜-金-稀土成矿系统。主持和参与了多项国家自然科学基金和科技部重点研发项目,发表SCI论文80余篇,包括第一作者和通讯作者在Economic Geology,Mineralium Deposita,Geochimica et Cosmochimica Acta,Chemical Geology和American Mineralogist等矿床学和矿床地球化学的重要期刊上发表论文40余篇,论文引用超5000次 (Google Scholar)。 

Researchgate: Researchgate主页

Google scholar: scholar主页


二、教学情况 

本科生课程:《矿床学》、《矿床学前沿》

研究生课程:《高级矿床学》、《矿床学理论与矿产勘查前沿》、《大地构造与成矿》


三、主要研究方向和研究兴趣 

1、岩浆热液铁-铜-金-稀土成矿系统:包括铁氧化物-铜-金(IOCG)矿床、玢岩铁矿(IOA)、矽卡岩型矿床和碳酸岩相关的稀土矿床等

2、盆地流体铜-铅-锌-铀成矿系统

3、成因矿物学反演热液成矿系统形成和演化过程及其找矿指示 

4、华南前寒武纪构造演化与成矿作用


四、近期主要研究项目 

[10] 矿床学(国家自然科学基金委创新研究群体项目,编号42321001,2024-2028),参与

[9] 扬子地台东北缘伸展-裂解与铁-铜循环(国家重点研发计划项目课题, 编号2023YFF0804202, 2023.12-2027.11),主持

[8] 滇中成矿带元古代裂谷盆地铜钴和富铁矿成矿作用(NSFC-云南联合基金,编号U2202210 ,2023-2026),主持

[7] 蚀变矿物和流体包裹体卤族元素LA-ICPMS原位分析对热液矿床成因的指示: 以长江中下游成矿带为例 (国家自然科学基金面上项目,编号41972074 ,2020-2023),主持

[6] 矿床学(国家自然科学基金优秀青年项目,编号41822203,2019-2021),主持

[5] 华北克拉通破坏成矿响应的集成研究(国家自然科学重大研究计划集成项目,编号91514303,2016-2017),主持

[4] 康滇铁铜成矿带典型矿床成矿机制:矿物微区地球化学和年代学制约(国家自然科学面上项目,编号41472068,2015-2018),主持

[3] 华北东部巨量金来源、迁移与富集机理(国家重点研发计划深地资源勘查开采专项,编号2016YFC0600104,2016-2020),参加

[2] 稀有金属元素成矿的构造-岩浆深部过程(科技部深地资源探测专项项目,编号2017YFC0602401,2017-2021),参加

[1] 矽卡岩型富铁矿形成机制及控制因素(国家重点基础研究发展计划(973计划)课题,编号2012CB416802: 2012-2016),参加


五、代表性论文

52) Zhao, X.-F.*, Zeng, L.-P., Liao, W., Fan, Y.-Z., Hofstra, A.H., Emsbo, P., Hu, H., Wen, G., Li, J.-W., 2024. Iron oxide–apatite deposits form from hydrosaline liquids exsolved from subvolcanic intrusions. Mineralium Deposita, 59: 655-669.

51) Su, Z.-K., Zhao, X.-F.*, Wang, C.Y., Zi, J.-W., McNaughton, N.J., Spandler, C., 2023. Hydrothermal alteration episodes reflect multiple Proterozoic tectonic and magmatic events in the Kangdian region, western Yangtze Block. GSA Bulletin, 136(1-2): 329-350.

50) Yin, X., Zhao, X.*, Yin, R., Gao, L., Deng, C., Tian, Z., Chang, S., Lehmann, B., 2023. Mercury isotopic compositions of iron oxide‑copper‑gold (IOCG) hydrothermal systems: Deep Hg cycling in intracontinental settings. Chemical Geology, 641: 121777.

49) Liao, W., Zhao, X.-F.*, Zeng, L.-P., Weyer, S., Zhang, C., Horn, I., Holtz, F., 2023. Iron isotope fractionation during fluid metasomatism and ore-forming processes in magmatic-hydrothermal systems. Geochimica et Cosmochimica Acta, 355: 161-172.

48) Zhao, S.-R., Li, Z.-K.*, Lin, Z.-W., Gao, J.-F., Sun, H.-S., Li, M.Y.H., Zhao, X.-F.*, 2023. Magmatic fluids responsible for lode gold mineralization in the giant Linglong deposit at Jiaodong, North China Craton: Constraints from LiO isotopes. Chemical Geology, 638: 121696.

47) Su, Z.-K., Zhao, X.-F.*, Wang, C.Y., 2023. Trace elements and sulfur isotopic compositions of sulfides in the giant Dahongshan Fe-Cu-(Au-Co) deposit, SW China: Implications for fluid evolution and Co enrichment in IOCG systems. Ore Geology Reviews, 157: 105401.

46)  Su, Z.-K., Zhao, X.-F.*, Wang, C.Y., Zhu, Z.-M., Song, W.-L., Spandler, C., 2023. Survival of whole-rock Sm–Nd isotope system from REE redistribution and mineral-scale isotopic resetting amid hydrothermal alteration in REE-rich Fe-Cu deposit. Geochimica et Cosmochimica Acta, 348: 9-26.

45)  Su, J.-H., Zhao, X.-F.*, Hammerli, J., 2023. Apatite CO2 and H2O as indicators of differentiation and degassing in alkaline magmas. Journal of Petrology, 64(8): egad061.

44)  Su, J.-H., Zhao, X.-F.*, Li, X.-C., Chang, S.-R., Wu, Y.-B., Spandler, C., 2023. A linkage between early Silurian Nb-REE enriched alkaline magmatism and Neoproterozoic subduction metasomatized mantle in South Qinling, Central China. Lithos, 440-441: 107046.

43)  苌笙任, 苏建辉, 秦志军, 赵新福, 2022. 鄂西北碱性火山岩型铌矿床榍石矿物学及对铌富集机理的指示. 地球科学, 47(4): 1316-1332.

42)Hu, B., Zeng, L.-P., Liao, W., Wen, G., Hu, H., Li, M.Y.H., Zhao, X.-F.*, 2022. The origin and discrimination of high-Ti magnetite in magmatic-hydrothermal system: Insight from machine learning analysis. Economic Geology, 117(7): 1613-1627.

41)Liao, W., Su, Z.-K., Li, X.-C., Zhang, C., Zhao, X.-F.*, 2022. Cathodoluminescent, chemical and strontium isotopic characteristics of apatite from Lanniping Fe-Cu deposit, southwestern China: Implications for fluid evolution in IOCG systems. Ore Geology Reviews, 145: 104882.

40)Zeng, L.-P., Zhao, X.-F.*, Spandler, C., Hu, H., Hu, B., Li, J.-W., Hu, Y., 2022. Origin of high-Ti magnetite in magmatic-hydrothermal systems: Evidence from iron-oxide apatite(IOA) deposits of Eastern China. Economic Geology, 117(4): 923-942.

39)Lin, H.-T., Zhao, S.-R., Gao, L.-B., Zhao, X.-F.*, 2022. Geochronology, stable isotope and pyrite chemistry of the Cangzhuyugold deposit in the North China Craton: Implications for gold metallogeny of Xiaoqinling. Ore Geology Reviews, 144: 104812.

38)Su, J.-H., Zhao, X.-F.*, Li, X.-C., Hu, W., Chen, W., Slezak, P., 2022. Unmixing of REE-Nb enriched carbonatites after incremental fractionation of alkaline magmas in the Shaxiongdong complex, Central China. Lithos, 416-417: 106651.

37)Zhao, X.-F.*, Chen, H., Zhao, L., Zhou, M.-F., 2022. Linkages among IOA, skarn, and magnetitegroup IOCG deposits in China: from deposit studies to mineral potential assessment. In: Corriveau, L., Potter, E.G., Mumin, A.H. (Eds.), Iron oxide copper-gold (Ag-Bi-Co-U-REE) and affiliated deposits. Geological Association of Canada Special Paper 52, pp. 383-408.

36)殷学清, 林海涛, 苏治坤, 赵新福*, 2021. 东川式铜矿的成矿作用及后期叠加改造:来自硫化物原位硫同位素的制约. 矿床地质, 40(1): 34-52.

35)Xiong, L., Zhao, X.*, Zhao, S., Lin, H., Lin, Z., Zhu, Z., Wang, Z., Li, M.Y.H., Li, J., 2021. Formation of giant gold provinces by subduction-induced reactivation of fossilized, metasomatized continental lithospheric mantle in the North China Craton. Chemical Geology, 580: 120362.

34) Su, Z.-K., Zhao, X.-F.*, Li, X.-C., Zhou, M.-F., Kennedy, A.K., Zi, J.-W., Spandler, C., Yang, Y.-H., 2021. Unraveling mineralization and multistage hydrothermal overprinting histories by integrated in situ U-Pb and Sm-Nd isotopes in a Paleoproterozoic breccia-hosted IOCG deposit, SW China. Economic Geology, 116(7): 1687-1710.

33) Su, J.-H., Zhao, X.-F.*, Li, X.-C., Su, Z.-K., Liu, R., Qin, Z.-J., Chen, M., 2021. Fingerprinting REE mineralization and hydrothermal remobilization history of the Carbonatite-Alkaline complexes, Central China: Constraints from in situ elemental and isotopic analyses of phosphate minerals. American Mineralogist, 106(10): 1545-1558.

32) 朱照先, 赵新福*, 林祖苇, 赵少瑞, 2020. 胶东金翅岭金矿床黄铁矿原位微量元素和硫同位素特征及对矿床成因的指示. 地球科学, 45(3): 945-959.

31) 赵新福*, 曾丽平, 廖旺, 李婉婷, 胡浩, 李建威, 2020. 长江中下游成矿带玢岩铁矿研究新进展及对矿床成因的启示. 地学前缘, 27(2): 197-217.

30) Ngo, X.D., Zhao, X.-F.*, Tran, T.H., Deng, X.-D., Li, J.-W., 2020. Two episodes of REEs mineralization at the Sin Quyen IOCG deposit, NW Vietnam. Ore Geology Reviews, 125: 103676.

29) Xiong, L., Zhao, X.*, Wei, J., Jin, X., Fu, L., Lin, Z., 2020. Linking Mesozoic lode gold deposits to metal-fertilized lower continental crust in the North China Craton: Evidence from Pb isotope systematics. Chemical Geology: 119440.

28) Zeng, L.-P., Zhao, X.-F.*, Hammerli, J., Fan, T.-W.-T., Spandler, C., 2020. Tracking fluid sources for skarn formation using scapolite geochemistry: an example from the Jinshandian iron skarn deposit, Eastern China. Mineralium Deposita 55: 1029-1046.

27) Zhao, X.-F., Chen, W.-T., Li, X.-C., Zhou, M.-F.*, 2019. Iron oxide copper-gold deposits in China: A review and perspectives on ore genesis. In: Chang, Z., Goldfarb, R. (Eds.), Mineral Deposits of China. SEG Special Publication. No.22, 553-580.

26) Su, Z.-K., Zhao, X.-F.*, Zeng, L.-P., Zhao, K.-D., Hofstra, A.H., 2019. Tourmaline boron and strontium isotope systematics reveal magmatic fluid pulses and external fluid influx in a giant iron oxide-apatite (IOA) deposit. Geochimica et Cosmochimica Acta, 259: 233-252.

25) Su, J.-H., Zhao, X.-F.*, Li, X.-C., Hu, W., Chen, M., Xiong, Y.-L., 2019. Geological and geochemical characteristics of the Miaoya syenite-carbonatite complex, Central China: Implications for the origin of REE-Nb-enriched carbonatite. Ore Geology Reviews, 113: 103101.

24) 赵新福*, 李占轲*, 赵少瑞, 毕诗健, 李建威, 2019. 华北克拉通南缘早白垩世区域大规模岩浆-热液成矿系统. 地球科学, 44(1): 52-68.

23) 李建威*, 赵新福, 邓晓东, 谭俊, 胡浩, 张东阳, 李占轲, 李欢, 荣辉, 杨梅珍, 曹康, 靳晓野, 隋吉祥, 俎波, 昌佳, 吴亚飞, 文广, 赵少瑞 2019. 新中国成立以来中国矿床学研究若干重要进展. 中国科学:地球科学, 49: 1720-1771.

22) 林祖苇, 赵新福*, 熊乐, 朱照先, 2019. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示. 地球科学进展, 34(4): 399-413.

21) 陈伟, 赵新福, 李晓春, 周美夫, 2019. 中国铁氧化物-铜-金(IOCG)矿床的基本特征及研究进展. 岩石学报, 35(1): 99-118.

20) 纪敏, 赵新福*, 曾丽平, 范田纬腾, 2018. 鄂东南铜绿山矿床石榴子石显微结构及微区成分对成矿过程的指示. 岩石学报, 34(9): 2716-2732.

19) Zhao, X.-F.*, Zhou, M.-F., Su, Z.-K., Li, X.-C., Chen, W.T., Li, J.-W., 2017. Geology, geochronology, and geochemistry of the Dahongshan Fe-Cu-(Au-Ag) deposit, SW China: Implications for the formation of IOCG deposits in intracratonic rift settings. Economic Geology, 112(3): 603-628.

18) Zhao, X.-F.*, Su, Z.-K., Zeng, L.-P., 2017. Genetic models of IOCG and IOA deposits from China: Implications for ore genesis and their possible links, Proceedings of the 14th SGA Biennial Meeting. IOCG-IOA ore systems and their magmatic-hydrothermal continuum: A family reunion?, Québec City, pp. 835-838.

17) Bi, S.-J., Zhao, X.-F.*, 2017. 40Ar/39Ar dating of the Jiehe gold deposit in the Jiaodong Peninsula, eastern North China Craton: Implications for regional gold metallogeny. Ore Geology Reviews, 86: 639-651.

16) Zeng, L.-P., Zhao, X.-F. *, Li, X.-C., Hu, H., McFarlane, C., 2016. In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, Eastern China: Constraints on fluid metasomatism. American Mineralogist, 101(11): 2468-2483.

15) Su, Z.-K., Zhao, X.-F. *, Li, X.-C., Zhou, M.-F., 2016. Using elemental and boron isotopic compositions of tourmaline to trace fluid evolutions of IOCG systems: The worldclass Dahongshan Fe-Cu deposit in SW China. Chemical Geology, 441: 265-279.

14) Zhao, X.-F. *, Zhou, M.-F., Gao, J.-F., Li, X.-C., Li, J.-W., 2015. In situ Sr isotope analysis of apatite by LA-MC-ICPMS: constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China. Mineralium Deposita, 50(7): 871-884.

13) Li, X., Zhao, X., Zhou, M.-F., Chen, W.T., Chu, Z., 2015. Fluid inclusion and isotopic constraints on the origin of the Paleoproterozoic Yinachang Fe-Cu-(REE) deposit, southwest China. Economic Geology, 110(5): 1339-1369.

12) Zhou, M.-F., Zhao, X.-F., Chen, W.T., Li, X.-C., Wang, W., Yan, D.-P., Qiu, H.-N., 2014. Proterozoic Fe-Cu metallogeny and supercontinental cycles of the southwestern Yangtze Block, southern China and northern Vietnam. Earth-Science Reviews, 139(0): 59-82.

11) Zhao, X.-F., Zhou, M.-F., Li, J.-W., Selby D., Li C., Li X.-H. and Qi, L., 2013. Sulfide Re–Os and Rb–Sr isotopic ages and the tectonic environment of the Kangdian Fe–Cu metallogenic province, SW China. Economic Geology, 108(6): 1489-1498.

10) Zhao, X.-F., Zhou, M.-F., Li, J.-W., and Qi, L., 2013. Late Paleoproterozoic sediment-hosted stratiform copper deposits in South China: Their possible link to the supercontinent cycle. Mineralium Deposita, 48(1): 129-136.

9) Huang, X.-W., Zhao, X.-F.*, Qi, L., Zhou, M.-F., 2013. Re-Os and S isotopic constraints on the origins of two mineralization events at the Tangdan sedimentary rock-hosted stratiform Cu deposit, SW China. Chemical Geology, 347(0): 9-19.

8) Zhao, X.-F., Zhou, M.-F., Hitzman, M.W., Li, J.-W., Bennett, M., Meighan, C. and Anderson, E., 2012. Late Paleoproterozoic to Early Mesoproterozoic Tangdan Sedimentary Rock-Hosted Strata-bound Copper Deposit, Yunnan Province, Southwest China. Economic Geology, 107: 357-375.

7) Zhao, X.-F. and Zhou, M.-F., 2011. Fe–Cu deposits in the Kangdian region, SW China: A Proterozoic IOCG (iron-oxide–copper–gold) metallogenic province. Mineralium Deposita 46: 731-747.

6) Zhao, X.-F., Zhou, M.-F., Li, J.-W., Sun, M., Gao, J.-F., Sun, W.-H., Yang, J.-H., 2010. Late Paleoproterozoic to early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for tectonic evolution of the Yangtze Block. Precambrian Research, 182: 57-69.

5) Li, J.-W., Zhao, X.-F., Zhou, M.-F., Ma, C.-Q., de Souza, Z. and Vasconcelos, P., 2009. Late Mesozoic magmatism from the Daye region, eastern China: U–Pb ages, petrogenesis, and geodynamic implications. Contributions to Mineralogy and Petrology, 157: 383-409.

4) Li, J.-W., Zhao, X.-F., Zhou, M.-F., Vasconcelos, P., Ma, C.-Q., Deng, X.-D., de Souza, Z.S., Zhao, Y.-X., Wu, G., 2008. Origin of the Tongshankou porphyry–skarn Cu–Mo deposit, eastern Yangtze craton, Eastern China: geochronological, geochemical, and Sr–Nd–Hf isotopic constraints. Mineralium Deposita, 43(3): 315-336. 

3) Zhao, X.-F., Zhou, M.-F., Li, J.-W., and Wu, F.-Y., 2008. Association of Neoproterozoic A- and I-type granites in South China: Implications for generation of A-type granites in a subduction-related environment. Chemical Geology, 257:1-15.

2) 赵新福, 李建威, 马昌前, 郎银生, 2007. 北淮阳古碑花岗闪长岩侵位时代及地球化学特征: 对大别山中生代构造体制转换的启示. 岩石学报,  23(6): 1392-1402.

1) 赵新福, 李建威, 马昌前, 2006. 鄂东南铁铜矿集区铜山口铜(钼)矿床40Ar /39Ar年代学及对区域成矿作用的指示. 地质学报, 80(6): 849-862.



No Content

No content

No content

No content