Associate researcher
Doctoral Supervisor
Master Tutor
The Last Update Time : ..
Junwei Ma*, Ding Xia, Haixiang Guo, Yankun Wang, Xiaoxu Niu, Zhiyang Liu, Sheng Jiang (2022). Metaheuristic-based support vector regression for landslide displacement prediction: a comparative study. Landslides, 19: 2489-2511. doi: 10.1007/s10346-022-01923-6. (Corresponding author, ESI Hot and Highly Cited Paper)
Junwei Ma*, Yankun Wang, Xiaoxu Niu, Sheng Jiang, Zhiyang Liu (2022). A comparative study of mutual information-based input variable selection strategies for the displacement prediction of seepage-driven landslides using optimized support vector regression. Stochastic Environmental Research and Risk Assessment, 36: 3109-3129. doi:10.1007/s00477-022-02183-5. (Corresponding author, ESI Highly Cited Paper)
Junwei Ma*, Ding Xia, Yankun Wang, Xiaoxu Niu, Sheng Jiang, Zhiyang Liu, Haixiang Guo (2022). A comprehensive comparison among metaheuristics (MHs) for geohazard modeling using machine learning: Insights from a case study of landslide displacement prediction. Engineering Applications of Artificial Intelligence, 114: 105150. doi: 10.1016/j.engappai.2022.105150 (Corresponding author, ESI Highly Cited Paper)
Yankun Wang, Huiming Tang*, Jinsong Huang, Tao Wen, Junwei Ma*, Junrong Zhang (2022). A comparative study of different machine learning methods for reservoir landslide displacement prediction. Engineering Geology, 298: 106544. doi:10.1016/j.enggeo.2022.106544. (Corresponding author, ESI Hot and Highly Cited Paper)
Ren, Zhiyuan, Ma, Junwei, Liu, Jiayu, Deng, Xin, Zhang, Guangcheng, & Guo, Haixiang. (2024). Enhancing deep learning-based landslide detection from open satellite imagery via multisource data fusion of spectral, textural, and topographical features: a case study of old landslide detection in the Three Gorges Reservoir Area (TGRA). Geocarto International, 39(1), 2421224. https://doi.org/10.1080/10106049.2024.2421224
Junwei Ma*, Jie Dou (2023). Editorial: Machine learning modeling for spatial-temporal prediction of geohazard. Sensors, 23(22), 9262; doi: 10.3390/s23229262. (Corresponding author)