王璐 (教授)

教授 博士生导师 硕士生导师

主要任职:《GSA Bulletin》副编辑、《Lithos》编委、《Results in Geochemistry》编委、《Journal of Earth Science》科学编辑

曾获荣誉:中国地质学会青年地质科技奖银锤奖
湖北省自然科学二等奖
湖北省优秀学士论文指导教师
校优秀博士论文指导教师
校优秀共产党员
校十佳班主任
2020校优秀抗疫先进个人

性别:女

出生年月:1978-04-04

毕业院校:中国地质大学(武汉)

学历:博士研究生

学位:理学博士学位

在职信息:在职

所在单位:地质过程与矿产资源国家重点实验室

入职时间:2005-07-01

职务:Professor

学科:构造地质学

联系方式:wangluouc@qq.com https://www.scopus.com/authid/detail.uri?authorId=35575221300 https://orcid.org/0000-0002-4526-5366

Email:

研究领域

当前位置: 王璐中文主页 >> 科学研究 >> 研究领域

 

博士期间从事大别山超高压榴辉岩和硬玉石英岩的显微构造与P-T-t-D轨迹研究,近10余年关注和报道:

1)苏鲁造山带超高压变质岩的变形-变质-熔流体演化史。俯冲带内熔流体活动对深俯冲大陆地壳的快速折返、陆壳生长和岩浆活动起着至关重要的作用。率先报道超高压榴辉岩折返期间部分熔融形成混合岩化榴辉岩,系统深入研究其在折返不同时期的部分熔融反应和机制、熔体来源、及变形特征。试图建立造山带沿走向P-T-t-D-Melting的时空演化序列和确定其差异性,及其对俯冲物质构造变形分异、流变学性质和快速折返的影响,从而深入理解陆陆碰撞造山带折返期间的物理、化学演化过程,为壳幔反应、新生地壳的形成演化及折返动力学机制提供依据。成果发表在Nature Communications, EPSL,GSAB, JMG, Lithos等期刊。

2)太古宙板块构造启动标志及板块构造样式。现代板块构造样式在太古宙是否和何时启动,是地球早期演化争论热点和前沿科学问题之一。以华北克拉通中部造山带南北向延伸1600km长的太古宙构造混杂岩带为天然实验室,聚焦显生宙现代板块构造样式中典型的构造、岩石和超高压矿物学证据,识别和报道25亿年前就已形成的大型横向板块运动形成的构造(大型逆冲推覆构造体)、榴辉岩相变质的俯冲洋壳和豆荚状铬铁矿中的超高压矿物等现代板块构造标志特征,为太古宙现代板块构造的启动提供系统的标志和地质依据。成果发表在Nature Communications, PNAS, Earth Science Review, EPSL,Geology, GSA Bulletin, Precambrian Geology等期刊。

未来将继续关注全球不同时代(太古宙-显生宙)、不同大地构造背景在挤压-伸展条件(增生-碰撞型造山带、俯冲带)下地壳熔融的机制、时限和生成熔体及其对新生地壳的贡献。

已发表文章70余篇, 。已发表文章请访问 https://www.scopus.com/authid/detail.uri?authorId=35575221300



Research field: 


Apply integrated methods including, detailed field mapping (with drone mapping technology), structural analysis, microstructure, metamorphic petrology, geochemistry, and geochronology, carry out interdisciplinary and multiple scale study on the P-T-t-Deformation-(Melting) history of UHP-HP metamorphic rocks, understand their deformation and fluid-melt evolution,  to reconstruct the physical and chemistry evolution of an orogen at convergent boundary. This will help us understand the subduction-exhumation geodynamics mechanism along the subduction zone, deep recycling of material and water,  crustal growth and reconstruction, forming the land where people and other living being rely on to live. 


Searching for index feature of modern plate-tectonics at the relict of precambrian convergent plate boundaries. Identify and report structural, petrological and UHP mineral evidence for modern plate tectonics initiation in the 1600km long of Neoarchean melange belt, Central Orogenic Belt of North China Craton.


Research target: UHP-HP metamorphism; Partial melting of UHP-HP metabasic rocks (eclogite); podiform chromitites; Archean plate tectonics



 

主持科研项目及人才基金项目情况

1.     2022.1-2024.12,地矿国重自主研究课题,地球早期刚性板块的边界地质过程记录:对关键矿产资源和宜居地球形成及演变的启示,MSFGPMR2022-07,主持

2.      2021.1-2024.12,国家自然科学面上基金,42072228,北苏鲁造山带变基性岩的部分熔融:构造,P-T-t轨迹和熔流体演化之间的联系,主持

3.      2020.1-2022.12,国家自然科学基金委-中蒙科技合作基金项目,41961144020,蒙古东南部增生型构造:对中亚造山带中国段对比的启示,参与,排名2,已结题.

4.      2018.1-2021.12 国家自然科学基金重大研究计划重点支持项目,91755213,大陆碰撞侧向逃逸和初始板块边界的形成,参与,排名2,已结题.

5.      2016.1-2019.12,国家自然科学面上基金,41572182,超高压榴辉岩的P-T-t-变形-熔融演化过程及其流变学意义,主持,已结题

6.      2015.1-2017.12, 中央高校专项腾飞计划G1323511572,俯冲带高压-超高压变质岩的部分熔融, 主持,已结题

7.      2013.1-2016.12国家自然科学面上基金,41272225,部分熔融榴辉岩及其对深大陆俯冲的流变学意义,主持,已结题

8.      2013.1-2014.12中央高校基本科研业务费专项资金,2012219279-CUG120818苏鲁仰口超高压榴辉岩粒间柯石英保留、变形机制及其意义,主持,已结题

9.      2011.1-2014.12,国家自然科学基金重大研究计划重点支持项目,91014002,华北克拉通与世界范围其它代表性克拉通的对比研究:对克拉通破坏和大陆生长的启示, 参加(排名3,已结题

10.  2011.1-2012.12,中国博士后特别资助项目,201104495苏鲁仰口超高压变质带内榴辉岩原位部分熔融构造几何学和岩石成因研究,主持,已结题

11.  2010.1-2011.12,中国博士后科学基金,20100471203,三峡地区黄陵背斜西南超基性岩流变学特征及其大地构造意义,主持,已结题

12.  中国东部苏鲁造山带部分熔融榴辉岩的岩石成因与构造演化,德国Robert Bosch基金会,32.5.8003.0105.02011.9-2012.4,排名2

13.  2009.1-2011.12. 国家自然科学基金青年项目,40802045, 仰口超高压-高压变质地块的多期叠加变形精细构造分析和流变学研究,已结题,主持。

发表文章情况

  

1.         Peng Feng, Lu Wang*, Xiawen Li, Wenjie Ding, Zhe Chen, 2023, SS-LASS Zircon Dating Deciphering Multiple Episodes of Anatexis in A Deeply-subducted Continental Crust: An Example from Sulu Orogen, China, Journal of Earth Science, https://doi.org/10.1007/s12583-022-1797-8, in press.

2.  Peng, Y., Kusky, T.*, Wang, L.*, Luan, Z., Wang, C., Liu, X., Zhong, Y., Noreen J.E., 2022, Passive margins in accreting Archaean archipelagos signal continental stability promoting early atmospheric oxygen rise. Nature Communications 13, 7821.          doi.org/10.1038/s41467-022-35559-w

3.         Ning, W.B., Kusky, T.M.*, Wang, L.*, Huang, B. Archean eclogite-facies oceanic crust indicates modern-style plate tectonics, PNAS, 2022, DOI: 10.1073/pnas.2117529119

4.         Kusky, T.*, Huang, Y., Wang, L.*, Robinson, P., Wirth, R., Polat, A., Hu, Wei, 2022, Vestiges of early Earth’s deep subduction and CHONSP cycle recorded in Archean ophiolitic podiform chromitites, Earth Science Reviews, doi.org/10.1016/j.earscirev.2022.103968,

5.         Kusky, T. and Wang, L., 2022. Growth of continental crust in intra-oceanic and continental margin arc systems: analogs for Archean systems. Science China Earth Sciences (1674-7313).

6.         Wang, Z., Kusky, T. and Wang, L., 2022. Long-lasting viscous drainage of eclogites from the cratonic lithospheric mantle after Archean subduction stacking. Geology, 50(5): 583-587.

7.         Zhong, Y., Kusky, T.M.* and Wang, L.*, 2022. Giant sheath-folded nappe stack demonstrates extreme subhorizontal shear strain in an Archean orogen. Geology, 50(5): 577-582.

8.         Wang, S.J., Brown, M., Wang, L., Johnson, T., Olierook, H.K.H., Kirkland, C. L., Clark, A. K., Evans, N.J., and McDonald B.J., Two-stage exhumation of deeply subducted continental crust: Insight from zircon, titanite, and apatite petrochronology, Sulu belt of eastern China. GSA Bulletin, 2022, https://doi.org/10.1130/B36309.1

9.         Zhong, Y.T., Kusky, T.M*., Wang, L*., Polat, A., Peng, Y.Y., Luan, Z.K., Liu, X.Y., and Wang, C.H., Wang, J.P., 2021, Alpine-style nappes thrust over ancient North China continental margin demonstrate large Archean horizontal plate motions: Nature Communications, 12, 6172. https://doi.org/10.1038/s41467-021-26474-7.

10.     Wang L., Wang S.J., Feng P., Wang Z.C., Brown M., Johnson M., 2021. Multiple Genesis of Fluid and Melt during Exhumation of Deeply-subducted UHP Eclogite. Acta Geologica Sinica (English Edition), 95(supp. 1): 65–67.

11.     Deng, H., Jia, N., Kusky, T., Polat, A., Peng, G., Huang, B., Wang, L., Wang, JP., 2021. From subduction initiation to hot subduction: Life of a Neoarchean subduction zone from the Dengfeng Greenstone Belt, North China Craton. GSA Bulletin, 134(5-6): 1277-1300.

12.     Wang, L., Kusky, T.M.*, Zhang, Y.J., Lentz, D., Zhong, Y.T., Ding, W.J., Deng, H., Giddens, R., Peng, S.B. Extreme Sulfur Isotope Fractionation of Hydrothermal Auriferous Pyrites from the SW Fringe of the Taupo Volcanic Zone, New Zealand: Implications for Epithermal Gold Exploration, Results in Geochemistry, 2021

13.     Huang, Yang, Wang, Lu*, Robinson, P.T., Ning, W.B., Zhong, Y.T., Wang, J.P., Hu, W., Polat, A., Kusky, T.M*. Podiform chromitite genesis in an Archean juvenile forearc setting: The 2.55 Ga Zunhua chromitites, North China Craton, Lithos, 2021, 394-395, 106194.

14.     Feng, Peng, Wang, Lu*, Brown M., Johnson, Tim E, Kylander-Clark, Andrew, Piccoli, Philip M. Partial melting of ultrahigh-pressure eclogite by omphacite-breakdown facilitate drive exhumation of deeply-subducted crust. Earth and Planetary Science Letters, 2021,554, 116664.

15.     Wang, S. J., Wang, L*., Ding, Y., Wang, Z.C., 2020. Origin and Tectonic Implications of Post-Orogenic Lamprophyres in the Sulu Belt of China. Journal of Earth Science, 31(6): 1200–1215. https://doi.org/10.1007/s12583-020-1070-y. http://en.earth-science.net

16.     Feng, P., Wang, L.*, Brown, M., Wang, S.J., and Li, X.W., 2019, Separating multiple episodes of partial melting in polyorogenic crust: An example from the Haiyangsuo complex, northern Sulu belt, eastern China: Geological Society of America Bulletin, https:// doi.org/10.1130/B35210.1, Oct. 2019; v. 1325-6):1235–1256

17.     Wang, S.J., Wang, L. *, Brown, M. *, Johnson, T..E., Piccoli, P.M., Feng, P., Wang, Z.L., Petrogenesis of leucosome sheets inmigmatitic UHP eclogites—Evolutionfrom silicate-rich supercritical fluid to hydrous melt, 2020, 360-361, https://doi.org/10.1016/j.Lithos.2020.105442

18.     Kusky, T.M., Wang, J.P., Wang, L., Huang, B., Ning, W.B., Fu, D., Peng, H.T., Deng, H., Polat, A., Zhong, Y.T., and Shi, G.Z., 2020, Melanges through time: Life Cycle of the world’s largest Archean mélange compared with Mesozoic and Paleozoic subduction-accretion-collision mélanges, Earth Science Reviews 209, 103303. https://doi.org/10.1016/j.earscirev.2020.103303

19.     Ning, W.B., Kusky, T.*, Wang, J.P., Wang, L., Deng, H., Polat, A., Huang, B., Peng, H.T., and Feng, P., 2020, From subduction initiation to arc-polarity reversal: Life cycle of an Archean subduction zone from the Zunhua ophiolitic mélange, North China Craton, Precambrian Research 350, 105868. https://doi.org/10.1016/j.precamres.2020.105868

20.     Huang, B., Kusky, T.*, Johnson, T., Wilde, S., Wang, L., Polat, A., and Fu, D., 2020, Paired metamorphism in the Neoarchean: a record of accretionary-to-collisional orogenesis in the North China Craton, Earth and Planetary Science Letters, v. 543, 116355, https://doi.org/10.1016/j.epsl.2020.116355

21.     Deng, H., Kusky, T.M., Polat, A., Fu, H.Q., Wang, L., Wang, J.P., Wang, S.J., Zhai, W.J., 2020. A Neoarchean Arc-Backarc Pair in the Linshan Massif, Southern, North China Craton. Precambrian Research, 341: 105649.

22.     Parlak, O., Dunkl, I., Karaoğlan, F., Kusky, T.M., Zhang, C., Wang, L., Köpke, J., Billor, Z., Hames, W.E., Şimşek, E., Şimşek, G., Şimşek, T., and Öztürk, S.E., 2019, Rapid cooling history of a Neotethyan ophiolites: Evidence for contemporaneous subduction and metamorphic sole formation: Accepted by Geological Society of America Bulletin. https://doi.org/10.1130/B35040.1, 2019.

23.     Huang, B., Kusky, T.M.*, Wang, L., Polat, A., Fu, D., Windley, B.F., Deng, H., and Wang, J.P., 2018, Structural relationships and kinematics of the Neoarchean Dengfeng forearc and accretionary complexes, southern North China craton: Geological Society of America Bulletin, v. 131, p. 966-996, https://doi.org/10.1130/B31938.1.

24.     Huang, B., Kusky, T.M., Wang, L., Deng, H., Wang, J., Fu, D., Peng, H., Ning, W., 2019. Age and genesis of the Neoarchean Algoma-type banded iron formations from the Dengfeng greenstone belt, southern North China Craton: Geochronological, geochemical and Sm–Nd isotopic constraints. Precambrian Research 333, 105437.

25.     Wang, J.P., Li, X.W., Kusky, T.M.*, Ning, W.B., Wang, L., Polat, A., and Deng, H., 2019, Geology of a Neoarchean suture: Evidence from the Zunhua ophiolitic melange of the Eastern Hebei Province, North China Craton: Accepted by Geological Society of America Bulletin, https://doi.org/10.1130/B35138.1.

26.     Xia, B., Brown, M., Wang, L., Wang, S.J., and Piccoli, P., 2018, Phase equilibrium modeling of MT–UHP eclogite: a case study of coesite eclogite at Yangkou Bay, Sulu Belt, Eastern China: Journal of Petrology, v.59(7), p.1253-1280, https://doi.org/ 10.1093/petrology/egy060.

27.     Wang, L., Wang, S.J., Brown, M., Zhang, J.F., Feng, P. and Jin, Z. M., 2018, On the survival of intergranular coesite in UHP eclogite: Journal of Metamorphic Geology, v. 36, p. 173-194, https://doi.org/10.1111/jmg.12288.

28.     Wang L., Kusky T.M., Polat A., Wang S.J., Jiang X.F., Zong K.Q., Wang J.P., Deng H., Fu J.M, 2014, Partial melting of deeply subducted eclogite from the Sulu Orogen in China: Nature Communications v. 5, p. 5604, https://doi.org/ 10.1038/ncomms6604 (2014).

29.     Wang, S.J., Wang, L., Brown, M., Piccoli, P.M., Johnson, T.E., Feng, P., Deng, H., Kitajima, K., and Huang, Y., 2017, Fluid generation and evolution during exhumation of deeply subducted UHP continental crust: Petrogenesis of composite granite-quartz veins in the Sulu belt, China: Journal of Metamorphic Geology, v. 35, p. 601–629, https://doi.org/10.1111/jmg.12248.

30.     Wang, S.J., Wang, L., Brown, M., and Feng, P., 2016, Multi-stage barite crystallization in partially melted UHP eclogite from the Sulu belt, China: American Mineralogist, v. 101, p. 564–579, https://doi.org/10.2138/am-2016-5384.

31.     Jiang, X.F., Peng, S.B., Kusky, T.M., Wang, L., and Deng, H., 2018, Petrogenesis and geotectonic significance of Early-Neoproterzoic olivine-gabbro within the Yangtze Craton: constrains from the mineral composition, U-Pb age and Hf isotopes of zircons: Journal of Earth Science, v. 29(1), p. 93-102, https://doi.org/10.1007/s12583-018-0885-2.

32.     Huang, Y., Wang, L. *, Kusky, T., Robinson, P.T., Peng, S. B, Polat, A. and Deng, H., 2017, High-Cr chromites from the Late Proterozoic Miaowan Ophiolite Complex, South China: Implications for its tectonic environment of formation: Lithos, v. 288, p. 35-54, https://doi.org/10.1016/j.lithos.2017.07.014.

33.     Wang J.P., Kusky T.M.*, Wang L., Polat A., Deng, H., Wang, C., and Wang, S.J., 2017, Structural relationships along a Neoarchean arc-continent collision zone, North China Craton: Geological Society of America Bulletin, v. 129 (1-2), p. 59-75, https://doi.org/10.1130/B31479.1.

34.     Wang J.P., Kusky T.M. *, Wang L., Polat A., Wang, S.J., Deng, H., Fu, J.M., and Fu, Dong, 2017, Petrogenesis and geochemistry of circa 2.5 Ga granitoids in the Zanhuang Massif: Implications for magmatic source and Neoarchean metamorphism of the North China Craton: Lithos, v. 268, p. 149-162, https://doi.org/10.1016/j.lithos.2016.10.028.

35.     Jiang, X.F., Peng, S.B. *, Kusky, T., Wang, L., Deng, H., and Wang, J.P., 2017, Formation time of the Northeastern Jiangxi ophiolite in the Eastern Jiangnan Orogenic Belt: evidence from LA-ICP-MS Zircon U-Pb Dating of the Gabbro: Geoscience, v. 31(4), p. 1-9. (in Chinese)

36.     Deng, H., Peng, S. B.*, Polat, A., Kusky, T., Jiang, X.F., Han, Q.S., Wang,L., Huang, Y., Wang, J.P., Zeng, W., and Hu, Z.X., 2017, Neoproterozoic IAT intrusion into Mesoproterozoic MOR Miaowan ophiolite, Yangtze Craton: evidence for evolving tectonic settings: Precambrian Research, v. 289, p.75-94, https://doi.org/10.1016/j.precamres.2016.12.003.

37.     Liu, X.W., Xie, Z.J., Wang,L., Xu, W., and Jin, Z.M., 2016, Water incorporation in garnets from ultrahigh pressure eclogites at Shuanghe, Dabieshan: Mineralogical Magazine, v. 80(6), p. 959-975, https://doi.org/10.1180/minmag.2016.080.034.

38.     Polat, A., Wang, L., and Appel, P.W, 2015, A review of structural patterns and melting processes in the Archean craton of West Greenland: Evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian model: Tectonophysics, v. 662, p. 67-94, https://doi.org/10.1016/j.tecto.2015.04.006.

39.     Deng H., Kusky, T.M.*, Polat, A., Wang, C., Wang, L., Li, Y.X., and Wang, J.P., 2016, A 2.5 Ga fore-arc subduction-accretion complex in the Dengfeng Granite-Greenstone Belt, Southern North China Craton: Precambrian Research, v. 275, p. 241-264, https://doi.org/10.1016/j.precamres.2016.01.024.

40.     Jiang, X.F., Peng, S.B.*, Polat, A., Kusky, T., Wang, L., Wu, T.Y., Lin, M.S., Han, Q.S., 2016, Geochemistry and geochronology of mylonitic metasedimentary rocks associated with the Proterozoic Miaowan Ophiolite Complex, Yangtze craton, China: Implications for geodynamic events: Precambrian Research, v. 279, p. 37-56, https://doi.org/10.1016/j.precamres.2016.04.004.

41.     Wang, J.P., Kusky, T.M.*, Wang, L., Polat, A., and Deng, H., 2015, A Neoarchean subduction polarity reversal event in the North China Craton: Lithos, v. 220-223, p. 133-146, https://doi.org/10.1016/j.lithos.2015.01.029.

42.     Kusky, T.M., Windley, B.F., Wang, Lu, Wang, Z.S., Li, X.Y., Zhu, P.M., 2014, Flat slab subduction, trench suction, and craton destruction: Comparison of the North China, Wyoming, and Brazilian craton: Tectonophysics, v. 630, p. 208-221, https://doi.org/10.1016/j.tecto.2014.05.028.

43.     Wang, S.J., Wang, L.*, Fu, J.M., and Ding, Y., 2014, A new perspective for research of Dabie-Sulu Ultrahigh-Pressure Metamorphic Rocks: Application of Optical Microscope-Based Cathodoluminescence: Earth Science, v. 39(3), p. 357-367 (in Chinese).

44.     Zhang, L.*, Wang L., Yin, K.D.*, Lü, Y., Zhang, D.R., Yang, Y.Q., Huang, X.P., 2013, Pore water nutrient characteristics and the fluxes across the sediment in the Pearl River estuary and adjacent waters, China: Estuarine, Coastal and Shelf Science, v. 133, p.182-192, https://doi.org/10.1016/j.ecss.2013.08.028.

45.     Wang, L., Kusky, T., and Santosh, M., 2012, On the role of dual active margin collision for exhuming the world’s largest ultrahigh pressure metamorphic belt: Journal of Earth Science, v. 23, p. 802-812, https://doi.org/10.1007/s12583-012-0292-z.

46.     Kusky, T.M., Wang, L., Dilek, Y., Robinson, P., Peng, S.B. and Huang X.Y., 2011, Application of the modern ophiolite concept with special reference to Precambrian ophiolites: Science China, v. 54(3), p. 315-341, https://doi.org/10.1007/s11430-011-4175-4.

47.     Wang, L., Jin, Z.M., Kusky, T.M., Liu, X.W., and Xu, H.J., 2010, Microfabric characteristics and rheological significance of jadeite-quartzite from Shuanghe, Dabie Mountains: Journal of Metamorphic Geology, v. 28, p. 163-182, https://doi.org/10.1111/j.1525-1314.2009.00859.x.

48.     Wang, L., Kusky, T., and Li, S.Z.,2010, Structural Geometry and Evolution of an Exhumed Ultra-High Pressure Eclogite Massif, Yangkou Bay, Sulu Belt, China: Journal of Structural Geology, v. 32, p. 423-444, https://doi.org/10.1016/j.jsg. 2010.01.012.

49.     Wang, L., Jin, Z.M. and He, M.C., 2003, Raman spectrum study on quartz exsolution in omphacite of eclogite and its tectonic significances: Earth Science-Journal of China University of Geosciences, v. 14(2), p. 119-126. 

50.     Deng, H., Kusky, T., Polat, A., Wang, J.P., Wang, L., Fu, J.M., Wang, Z.S., and Yuan, Y., 2014, Geochronology, mantle source composition and geodynamic constraints on the origin of Neoarchean mafic dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton: Lithos, v. 205, p. 359-378, https://doi.org/10.1016/j.lithos.2014.07.011.

51.     Wang, J.P., Kusky, T.M., Polat, A., Wang, L., Deng, H., and Wang, S.J., 2013, A late Archean tectonic mélange in the Central Orogenic Belt, North China Craton: Tectonophysics., v. 608, p. 929-946, https://doi.org/10.1016/j.tecto.2013.07.025.

52.     Deng, H., Kusky, T.M., Polat, A., Wang, L., Wang, J.P., and Wang, S.J., 2013, Geochemistry of Neoarchean mafic volcanic rocks and late mafic dikes and sills in the Zanhuang Complex, Central Orogenic Belt, North China Craton: Implications for geodynamic setting: Lithos, v. 175-176, p. 193-212, https://doi.org/10.1016/j.lithos.2013.05.007.

53.     Zhang, J.F., Shi F., Xu, H.J., Wang, L., Feng, S.Y., Liu, W.L., Yang, Y.F., Green II, H.W., 2012, Petrofabric and strength of SiO2 near the quartz-coesite phase boundary: Journal of Metamorphic Geology, v. 31, p. 83-92, https://doi.org/10.1111/jmg.12006.

54.     Wang, J.P., Kusky, T.M.*, Polat, A., Wang, L., Peng, S.B., Jiang, X.F., Deng, H., Wang, S.J., 2012, Sea-floor metamorphism recorded in epidosites from the ca.1.0 Ga Miaowan Ophiolite, Huangling Anticline: China. Journal of Earth Science, v. 23(5), p. 696-704, https://doi.org/10.1007/s12583-012-0288-8.

55.     Deng, H., Kusky, T.M., Wang, L., Peng, S.B., Jiang, X.F., Wang, J.P., Wang, S.J., 2012, Discovery of a sheeted dike complex in the Northern Yangtze Craton and its Implications for Craton evolution: Journal of Earth Science, v. 23, p. 676-695, https://doi.org/10.1007/s12583-012-0287-9.

56.     Peng, S.B., Kusky, T.M., Jiang, X.F., Wang, L., Wang, J.P., and Deng, H, 2011, Geology, geochemistry, and geochronology of the Miaowan ophiolite, Yangtze craton: Implications for South China’s amalgamation history with the Rodinian supercontinent: Gondwana Research, v. 21, p. 577-594, https://doi.org/10.1016/j.gr.2011.07.010.

57.     Santosh, M., Kusky, T., and Wang, L., 2011, Supercontinent cycles, extreme metamorphic processes and changing fluid regimes: International Geology Review, v. 53, p. 1403-1423, ` https://doi.org/10.1080/00206814.2010.527682.

58.     Li, S.Z., Kusky, T.M., Zhao, G.C., Liu, X.C., Wang, L., Kopp, H., Hoernle, K., Zhang, G.W., Dai, L.M., 2011, Thermochronological constraints on Two-stage extrusion of HP/UHP terranes in the Dabie-Sulu orogen, east-central China: Tectonophysics, v. 504, p. 25-42, https://doi.org/10.1016/j.tecto.2011.01.017.

59.     Li, S.Z., Kusky, T.M., Zhao, G.C., Liu, X.C., Zhang, G.W., Kopp, H., Wang, L., 2010, Two-stage Triassic exhumation of HP-UHP terranes in the Dabie orogen of China: constraints from structural geology: Tectonophysics, v. 490, p. 267-293, https://doi.org/10.1016/j.tecto.2010.05.010

60.     Zhang, L., Wang, L., Yang, Y.Q., Zhang, D.R, 2009, Cu Environmental Geochemical Characteristics in the Soil and Water in in copper-rich deposits of Southeastern Hubei Province, along the Middle Yangtze River, Central China: Environmental Pollution, v. 157, p. 2957–2963, https://doi.org/10.1016/j.envpol.2009.06.008.

61.     Li, S.ZKusky, T.M.Wang, L.Zhang, G.W., Lai, S.C.Liu, X.C., Dong, S.W., Zhao, G.C., 2007, Collision leading to multiple-stage large-scale extrusion in the Qinling orogen: insights from the Mianlue suture: Gondwana Research, v. 12, p.121-143, https://doi.org/10.1016/j.gr.2006.11.011Get rights and content.

62.     Liu, X.W., Jin, Z.M., Qu, J., and Wang, L., 2005, Exsolution of ilmenite and Cr-Ti magnetite from olivine of garnet-wehrlite: Science in China Series D: Earth Sciences, v. 48(9), p.1368, https://doi.org/10.1360/03yd0590.

63.     Wang, L., Jin, Z.M., and Zhang, J.F., 2005, Proceeding of Research on Fabric and Deformation Mechanisms of Omphacite in Ultra-high Pressure Metamorphic Eclogite: Geological Science and Technology Information, v. 24(1), p. 19-24. (in Chinese)

64.     Jin, Z.M., Zhang, J.F., Liu, X.W., and Wang, L, 2007, Study on Rheology of Ultra-High Pressure Eclogite: Geoscience, v. 21, p. 183194. (in Chinese).

65.     Peng, S.B., Li, C.N., Kusky, T.M., Wang, L., Zhang, X.J., Jiang. X.F., and Xiong, C.R., 2010, Discovery and its tectonic significance of the Proterozoic Miaowan ophiolites in the southern Huangling anticline,western Hubei, China: Geological Bulletin of China, v. 29(1), p. 8-20. (in Chinese).

66.     Wu, Y., Jin, Z.M., Ou, X.G., Xu, H.J., and Wang, L., 2005, Lithospheric thermal structure beneath the area of the Chinese Continental Scientific Drilling Site (CCSD): Acta Petrologica Sinica, v. 21, p. 439-450.  (in Chinese).

67.     Ou X.G., Jin Z.M., and Wang L., 2004, Thermal conductivity and its anisotropy of rocks from the depth of 100-2000m mainhole of Chinese Continental Scientific Drilling: revelations to the study on thermal structure of subduction zone: Acta Petrologica Sinica, v. 20(1), p. 109118.  (in Chinese).

68.     Xu, S.M., Li, S.Z., Wang, L., and Zhou, L.H., 2008, Distribution and sedimentary facies of mesozoic main target strata in south tidal land of huanghua depression: Marine geology & Quaternary Geology, v. 28(1), p. 61-68. (in Chinese).

69.     Li SZ, Kusky TM, Zhao GC, Sun M, …Wang L. Mesozoic tectonics in the Eastern Block of the North China Craton: implications for subduction of the Pacific plate beneath the Eurasian plate. Geological Society Special Publication, 280, 171-188, 2007