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Leaf wax n-alkanes in lacustrine sequences have been widely applied for reconstructions of Late
Quaternary paleoclimate histories. Such applications depend on knowledge of the factors controlling
the characterization of the n-alkane paleoproxies of aquatic plants. This study analyzed the molecular
distributions and carbon and hydrogen isotopic compositions of n-alkanes of aquatic plant samples col-
lected from the middle and lower reaches of the Yangtze River (MLYR). In this collection, the n-alkane
distributions of submersed/floating plants and emersed plants are distinctly different. By combining their
Paq and n-alkane d13C values, the n-alkane contributions from submersed plants and emersed plants in
the MLYR can be differentiated. It is also noteworthy that the hydrogen isotope fractionation (ealk/water;
avg. �166‰) between the n-C23 alkane of submersed plants in the MLYR and in precipitation agrees well
with previous studies, suggesting a nearly constant ealk/water for the submersed plants. Moreover, com-
pared to C3 dicots growing in a similar climate, submersed plants in the humid MLYR have lower n-
alkane d2H values. This feature may arise from isotopic differences in the evapotranspiration of lake water
versus leaf water and in the biosynthetic fractionations of leaf waxes of these two plant groups. These
results aid interpretations of the hydrogen isotope offset of the d2H values of n-alkanes between aquatic
and terrestrial plants in humid climates.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

n-Alkanes are important components of plant waxes. They tend
to be well preserved in diverse geological archives, including lacus-
trine and marine sediments, peat deposits, and paleosol-loess
sequences (e.g., Meyers, 2003; Eglinton and Eglinton, 2008; Naafs
et al., 2019). Their molecular distributions and carbon and hydro-
gen isotope compositions have become important tools for paleo-
climate and paleoecology reconstructions in the Quaternary
epoch (Castañeda and Schouten, 2011; Sachse et al., 2012;
Diefendorf and Freimuth, 2017). In lacustrine environments, many
studies have explored the paleoenvironmental significance of leaf
wax n-alkanes (e.g., Huang et al., 2004; Sachse et al., 2004;
Mügler et al., 2008; Aichner et al., 2010a; Garcin et al., 2012; Rao
et al., 2014; Liu et al., 2015). In such settings, sources of n-
alkanes include not only autochthonous contributions of aquatic
plants, bacteria, and algae, but also allochthonous contributions
of terrestrial plants brought in by incoming runoff (Meyers,
2003; Castañeda and Schouten, 2011). Due to diverse sources of
n-alkanes in lake sediments, the environmental significance of n-
alkanes is not well understood.

Previous studies have revealed distinctive patterns of n-alkanes
from different sources. Short-chain n-alkanes (<C21) mainly derive
from bacteria and algae (Cranwell et al., 1987; Meyers, 2003), mid-
chain n-alkanes (C21-C25) are mainly produced by floating and sub-
mersed plants (plants growing or adapted to grow underwater),
and long-chain n-alkanes (C27-C33) are usually interpreted to be
terrestrial in origin (Ficken et al., 2000; Aichner et al., 2010a).
The contributions of aquatic plants (submersed versus floating)
relative to emersed and terrestrial plants are captured by the Paq
ratio [Paq =(C23 + C25)/(C23 + C25 + C29 + C31)] (Ficken et al., 2000).
This proxy has then been widely utilized for paleoenvironmental
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reconstructions based on lacustrine sequences (e.g., Das et al.,
2009; Aichner et al., 2010a; Oritz et al., 2013; Sun et al., 2018).

Recently, some studies have argued that submersed plants can
also contribute a moderate proportion of long-chain n-alkanes,
which would complicate the application of the Paq ratio in lacus-
trine sequences (Aichner et al., 2010a; Liu and Liu, 2016; Liu
et al., 2016). In addition, some terrestrial plants contain significant
amounts of mid-chain n-alkanes, adding complexity to the applica-
tion of the Paq ratio (e.g., Ladd et al., 2018; Berke et al., 2019; Dion-
Kirschner et al., 2020; He et al., 2020). Furthermore, due to the sim-
ilar n-alkane compositions of floating and submersed plants, the
Paq ratio does not have the ability to differentiate contributions
from these two types of aquatic plants. In many shallow lakes, sub-
mersed plants have important ecological functions that are distinct
from those of floating and emersed plants. Submersed plants are
often major contributors to primary productivity and have impor-
tant influences on water quality and other biogeochemical pro-
cesses in lakes (e.g., Carpenter, 1981; Bayley and Prather, 2003).
Thus, it would be valuable to develop proxies to track the dynamics
of different components of aquatic plants in shallow lakes.

To distinguish the sources of n-alkanes in lake sediments, the
carbon isotope compositions of n-alkanes (d13Calk) have been
investigated in previous studies (e.g., Meyers, 2003; Castañeda
and Schouten, 2011; Holtvoeth et al., 2019). Some of these studies
commonly observed higher d13Calk values in submersed plants than
in terrestrial plants (e.g., Chikaraishi and Naraoka, 2003; Aichner
et al., 2010a; Liu et al., 2015, 2018). These studies indicate that d13-
Calk values could act as an effective proxy to distinguish the sources
of n-alkanes in lake sediments. Combining the Paq and d13Calk val-
ues has the potential to improve the source interpretation of n-
alkanes in lacustrine sediments; however, this potential has not
yet been tested in shallow lake settings.

In addition to the molecular distributions and carbon isotope
compositions, the hydrogen isotope compositions of n-alkanes (d2-
Halk) have been widely applied to hydroclimate reconstructions in
lacustrine sequences (e.g., Castañeda and Schouten, 2011; Sachse
et al., 2012). The d2Halk signals of individual compounds preserved
in lake sediments could yield information about the evolution of
the isotope composition of precipitation and its associated paleo-
climate changes (e.g., Huang et al., 2004; Sachse et al., 2004). In
addition, the d2Halk differences between terrestrial and aquatic
plants (eterr-aq) have been proposed as an effective indicator of
paleohumidity (e.g., Mügler et al., 2008; Rach et al., 2014, 2017;
Arnold et al., 2018). Interpretation of eterr-aq is based on the phe-
nomenon that the isotope composition of the source water of
aquatic plants is relatively unaffected by evaporation, whereas
the isotope composition of the source water used for wax produc-
tion in terrestrial leaves is sensitive to evapotranspiration (Mügler
et al., 2008; Rach et al., 2014). However, downcore results from
lake sediments from the Tibetan Plateau did not reveal a direct
relation between eterr-aq and paleohumidity (Rao et al., 2014). In
addition, the efficacy of this proxy might be limited by the source
complexity of n-alkanes in lake sediments (Rao et al., 2014). To
date, knowledge of d2Halk variations of n-alkanes > C21 is limited
for contemporary aquatic plants, particularly in regions with a
humid monsoon climate (Chikaraishi and Naraoka, 2003; Aichner
et al., 2010b; Liu et al., 2019).

There are many shallow lakes in the middle and lower reaches
of the Yangtze River (MLYR), and aquatic plants flourish in many of
them (Wang and Dou, 1998; Fang et al., 2006), providing an excel-
lent setting to study the differences of n-alkane distributions and
compound-specific isotope values in different types of aquatic
plants. In this study, we collected aquatic plants from five repre-
sentative lakes in the MLYR to establish a more effective method
to evaluate the autochthonous sources of plant waxes in lake sed-
2

iments and to interpret any variations of n-alkane d2H values in the
aquatic plants from these shallow lakes.
2. Materials and methods

2.1. Study area and sampling

The MLYR region in eastern China has a humid subtropical
monsoon climate. In this region, there are 108 lakes with surface
areas>10 km2, including the three largest freshwater lakes in
China, Lake Poyang, Lake Dongting and Lake Taihu (Wang and
Dou, 1998). The warm and humid climate of the early- and mid-
Holocene increased the water volume of the Yangtze River, which
combined with the postglacial rise in sea-level, led to the develop-
ment of lakes in the MLYR (Fang, 1991; Xu et al., 2019). Because
the terrain around the lakes has low relief, the lake basins are shal-
low and their water depths are commonly < 5 m (Wang and Dou,
1998; Wu et al., 2012).

In this study, samples of aquatic plants were collected along an
east–west transect of the MLYR in May and June of 2019 (Fig. 1).
Twelve species of common aquatic macrophytes were collected
from Lake Chang (JZCH), Lake Hong (HH), Lake Longgan (LGH), Lake
Shijiu (SJH) and Lake Yangcheng (YCH) in this transect (Table 1).
The common aquatic plant species are Najas marina, Myriophyllum
spicatum, Potamogeton wrightii, Potamogeton pectinatus, Vallisneria
asiatica, Hydrilla verticillata, Trapa sp., Nymphyoides peltatum,
Phragmites communis, Zizania caduciflora, Jussiaea repens and Alter-
nanthera philoxeroides. In total, 11 submersed, 6 floating and 6
emersed plant samples were collected for leaf wax n-alkane anal-
ysis (Table 1).

Immediately after collection in the field, plant samples were
individually wrapped in aluminum foil and preserved in a sealed
bag. After transport to the laboratory, all samples were rinsed with
distilled water and stored in a refrigerator at �20 ℃ until further
analysis.
2.2. Lipid extraction

Plant samples were washed with deionized water, freeze-dried,
and cut into small pieces. The homogenized plant samples (ca.1 g)
were ultrasonically extracted 15 min � 4 in CH2Cl2/MeOH (9:1, v/
v). Before extraction, cholane was added as an internal standard.
The total lipid extract was separated into aliphatic and polar frac-
tions using silica gel chromatography. The aliphatic fraction con-
taining n-alkanes was eluted with n-hexane.
Fig. 1. Map of shallow lakes investigated in this study.



Table 1
Information of shallow freshwater lakes investigated in this study.

name abbreviations latitude (�N) longitude (�E) altitude(m) deptha (m) areaa(km2) pHb

L. Chang JZCH 30.43 112.46 4 3.5 131 8.5
L. Hong HH 29.90 113.42 19 2.0 344 8.6
L. Longgan LGH 29.91 116.11 27 3.2 316 8.6
L. Shijiu SJH 31.50 118.94 9 3.3 210 8.8
L. Yangcheng YCH 31.44 120.79 16 1.9 119 8.4

a: data from Wu et al. (2012) and Hao et al. (2015).
b: data from Dang et al. (2016).
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2.3. Instrumental analyses

n-Alkanes were analyzed using a Shimadzu GC-2010 gas chro-
matograph (GC) equipped with a flame ionization detector (FID)
and a DB-5 column (30 m � 0.25 mm � 0.25 lm film thickness).
The sample was injected in splitless mode (1 ll) with the injector
at 300 ℃. The GC oven temperature was initiated at 70 ℃, then
ramped to 210 ℃ at 10 ℃/min, and finally raised to 300 ℃ at 3
℃/min (held 25 min). Compounds were identified by comparison
of sample peaks with the retention times of a standard mixture.
Quantification was achieved by comparison of peak areas with
the internal standard after adjustment for the relevant response
factors.

The d13C values of n-alkanes were measured with Finnigan
Trace GC coupled with a Finnigan Delta XP isotope ratio mass spec-
trometer (GC-IRMS) in the State Key Laboratory of Biogeology and
Environmental Geology, China University of Geosciences (CUG),
Wuhan. Samples were injected in splitless mode (1 ll), with the
injector at 290 ℃, and they were separated with a DB-5MS column
(30 m � 0.25 mm � 0.25 lm film thickness). The analytical proce-
dures were the same as Zhao et al. (2018). Instrumental perfor-
mance was verified by running an inhouse n-alkane mixture
(containing n-C23, C25, C27, C29, C31 and C33 alkanes) and the Indiana
A4 mixture (n-C16–30 alkanes, obtained from Arndt Schimmel-
mann, Indiana University). Each sample was run twice; only peak
intensities (m/z 44) > 500 mv are reported in this study. The stan-
dard deviation for duplicate analyses was better than ± 0.5‰.
Squalane (d13C value �19.8‰) was added as internal standard for
both samples and standards. Results were reported in the delta
notation (‰) relative to Vienna Peedee Belemnite (VPDB).
Table 2
Concentration of n-alkanes (lg/g dry weight) in aquatic plants in the middle-lower reach

No. Species Lake Type C21 C22 C23 C24

1 Najas marina L. Chang submersed 2.9 0.4 12.2 0.9
2 Najas marina L. Longgan submersed 4.8 0.4 12.9 0.8
3 Potamogeton pectinatus L. Chang submersed 11.7 0.6 27.9 1.0
4 Potamogeton wrightii L. Hong submersed 18.5 0.5 13.6 0.7
5 Potamogeton wrightii L. Shijiu submersed 14.5 0.4 8.3 0.5
6 Potamogeton wrightii L. Yangcheng submersed 38.5 1.5 40.2 1.8
7 Myriophyllum spicatum L. Hong submersed 2.2 2.4 80.4 57.0
8 Myriophyllum spicatum L. Shijiu submersed 0.5 0.8 35.2 18.6
9 Myriophyllum spicatum L. Yangcheng submersed 0.4 1.6 27.9 33.6
10 Vallisneria asiatica L. Yangcheng submersed 4.3 1.0 54.1 3.8
11 Hydrilla verticillata L. Yangcheng submersed 18.0 6.6 40.7 2.8
12 Trapa sp. L. Chang floating 1.0 0.4 33.5 4.4
13 Trapa sp. L. Hong floating 1.0 0.3 22.0 3.8
14 Trapa sp. L. Longgan floating 0.3 0.1 6.6 2.7
15 Trapa sp. L. Yangcheng floating 1.0 0.5 38.3 4.2
16 Trapa sp. L. Shijiu floating 1.1 0.4 17.6 3.4
17 Nymphyoides peltatum L. Shijiu floating 2.4 1.1 27.4 3.3
18 Alternanthera philoxeroides L. Hong emersed 1.5 1.8 18.2 6.4
19 Jussiaea repens L. Yangcheng emersed 0.5 0.2 1.1 0.7
20 Phragmites communis L. Hong emersed 0.3 0.5 4.1 4.1
21 Phragmites communis L. Shijiu emersed 0.3 0.2 2.0 1.0
22 Phragmites communis L. Yangcheng emersed 0.3 0.4 5.1 1.8
23 Zizania caduciflora L. Yangcheng emersed 0.2 0.2 1.4 1.5

a Sum = RC21-33; b Paq=(C23 + C25)/(C23 + C25 + C29 + C31); c CPI = [
P

odd(C21-31)+
P

odd(C

3

The d2H analysis of n-alkanes was achieved using a Trace GC
coupled with a Delta V Advantage isotope ratio mass spectrometer
in the State Key Laboratory of Biogeology and Environmental Geol-
ogy, CUG. Samples were injected in splitless mode (1 ll) with the
injector temperature at 290 �C, and a DB-5MS column (30 m � 0.
25 mm � 1.0 lm film thickness) was employed for compound sep-
aration. The analytical procedures were identical to that of Huang
et al. (2018). Briefly, the H3+ factor was monitored daily, with the
daily variation < 0.1. An inhouse n-alkane mixture (containing n-
C23, C25, C27, C29, C31 and C33 alkanes) and the Indiana A4 mixture
were run between every two samples to monitor the system stabil-
ity. Squalane (d2H value �167‰) was added as internal standard
for both samples and standards. Each sample was run twice. Repro-
ducibility for n-alkanes with a sufficient concentration (m/z 2
intensity in the range of 1000–4000 mv) was better than 5‰, based
on at least duplicate analyses. All d2H values were reported in the d
notation (‰) relative to the Vienna Standard Mean Ocean Water
(VSMOW) standard.
3. Results

3.1. Concentrations and distributions of n-alkanes

In the aquatic plant samples in this study, n-alkane chain
lengths range from C21 to C33 (Table 2, Fig. 2). The total n-alkane
(C21-C33) concentrations vary among aquatic plants, with higher
values in M. spicatum (range from 353.6 to 751.9 lg/g dry weight),
Trapa sp. (range from 135.9 to 354.9 lg/g dry weight), and A.
philoxeroides (361.9 lg/g dry weight) (Table 2), which are sub-
es of the Yangtze River.

C25 C26 C27 C28 C29 C30 C31 C32 C33 Suma Paq
b CPIc ACLd

9.8 0.7 6.6 0.5 6.7 0.4 1.5 42.5 0.73 13.1 25.3
9.4 0.5 5.7 0.4 6.3 0.3 1.7 43.2 0.74 16.1 25.0
18.3 0.7 8.8 0.5 4.7 0.2 2.9 78.1 0.86 22.0 24.4
12.1 0.6 7.8 0.4 1.8 0.2 0.5 56.8 0.92 18.6 23.6
8.3 0.4 5.5 0.2 1.1 39.2 0.94 20.8 23.4
39.0 1.5 25.0 0.6 5.4 153.5 0.94 23.8 23.9
446.3 53.2 92.8 8.7 9.1 752.0 0.98 5.2 25.1
231.7 16.2 46.4 1.9 2.4 0.2 0.5 354.4 0.99 8.4 25.1
207.1 28.3 48.0 3.2 2.9 0.2 0.5 353.6 0.99 4.3 25.2
26.4 5.4 24.1 9.2 24.2 4.0 7.6 164.0 0.72 5.9 25.5
5.2 0.6 1.2 0.5 0.6 0.2 1.4 77.8 0.96 5.5 22.9
171.9 2.6 53.1 1.1 16.0 2.3 10.5 0.5 2.4 299.9 0.89 25.4 25.6
145.3 2.6 42.1 0.9 12.0 0.4 6.1 236.5 0.90 28.4 25.5
207.7 4.3 80.1 1.5 28.2 1.0 18.2 0.4 3.9 354.9 0.82 34.4 26.2
151.1 2.4 51.9 1.0 15.3 0.4 7.7 0.2 1.9 275.9 0.89 30.5 25.5
76.8 1.6 21.5 0.6 6.9 0.4 4.4 0.2 0.8 135.9 0.89 19.2 25.5
21.7 1.0 8.7 0.6 4.5 0.3 2.2 73.3 0.88 10.3 24.8
26.0 8.9 69.5 13.3 138.6 10.6 57.3 3.0 6.9 362.9 0.18 7.1 28.3
6.2 1.1 8.8 1.5 8.9 0.9 4.5 0.5 0.7 35.4 0.35 6.2 27.7
15.3 7.9 36.6 7.4 41.9 1.9 7.2 0.4 1.2 128.8 0.28 4.8 27.7
4.1 2.6 14.4 2.9 20.3 0.9 3.8 0.2 1.4 54.1 0.20 5.7 28.0
6.8 4.0 17.0 4.8 29.9 1.1 4.8 0.2 1.3 77.6 0.26 5.3 27.8
4.5 3.2 9.4 2.8 12.3 1.1 3.4 0.2 0.8 41.0 0.27 3.5 27.9

23-33)]/[2�
P

even(C22-32)]; d ACL = Rodd(n � Cn)/RoddCn.



Fig. 2. Histograms of n-alkane distributions of the aquatic plant samples collected from the MLYR. (n is the number of samples; the error bar presents the difference in
concentration of n-alkanes between different samples.)

Fig. 3. Plots of Paq values against the ACL values (a) and CPI values (b) of n-alkanes in the aquatic plant samples collected from the MLYR.
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mersed, floating, and emersed plants, respectively. In all sub-
mersed and floating plant samples, the concentrations of C32 and
C33 n-alkanes are below the detection limit (Table 2). In three sub-
mersed specimens (P. wrightii collected from Lake Shijiu and Yang-
cheng, M. spicatum collected from Lake Hong), the concentrations
of C30 and C31 n-alkanes are also nearly absent. The total n-
alkane concentrations in the other aquatic plants vary in the rela-
tively narrow range from 35.4 to 164.0 lg/g dry weight (Table 2).
For n-alkane distributions, emersed plants have n-alkane distribu-
tions similar to terrestrial plants, both being dominated by C29 or
C31 (Fig. 2). In contrast, submersed plants and floating plants are
dominated by C23 or C25. In the submersed plants and floating
4

plants, N. marina, P. wrightii, V. asiatica, H. verticillata and N. pelta-
tumare are dominated by the C23 n-alkane, whereas M. spicatum
and Trapa sp. have a predominance of the C25 n-alkane. In addition,
P. pectinatus has an especially high proportion of the C21 n-alkane.
In the emersed plants, J. repens is dominated by the C27 and C29 n-
alkanes, whereas A. philoxeroides, P. communis and Z. caduciflora are
dominated by the C29 n-alkane. The distributions of n-alkanes in
this study are consistent with the results of previous investigations
of aquatic plants (Ficken et al., 2000; Chikaraishi and Naraoka,
2003; Aichner et al., 2010a; Liu and Liu, 2016).

In our dataset, the Paq values in submersed plants range from
0.72 to 0.99 (Table 2, Fig. 3). The floating plants in this study also
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have relatively higher Paq values (0.82–0.90, Table 2). In contrast,
emersed plants are characterized by lower Paq values (range from
0.18 to 0.35), which are significantly different from those from sub-
mersed/floating plants (one-way ANOVA test, p < 0.001). To better
compare the n-alkane distributions among different types of aqua-
tic plants, the averaged chain length (ACL) and carbon preference
index (CPI) were calculated (Fig. 3). The ACL values in emersed
plants (avg. 27.9, 1r 0.2) are significantly higher than in floating
plants (avg. 25.5, 1r 0.4) and submersed plants (avg. 24.5, 1r
0.9; one-way ANOVA test, p < 0.001). The CPI values in both float-
ing plants (avg. 24.7, 1r 8.7) and submersed plants (avg. 13.1, 1r
7.5) are variable, whereas the CPI values in emersed plants vary in
a relatively narrow range (avg. 5.4, 1r 1.2; Table 2; Fig. 3).

3.2. Carbon and hydrogen isotope compositions of n-alkanes

In the aquatic plant samples collected from the MLYR, the d13-
Calk values in submersed plants range from �17.1‰ to �29.0‰
(Table 3). In contrast, d13Calk values vary from �31.8‰ to
�36.9‰ in floating plants and �29.9‰ to �38.2‰ in emersed
Table 3
Carbon and hydrogen isotope compositions of n-alkanes in the aquatic plant samples.

No Species Lake Type d13C(‰, VPDB)

C23 C25

1 Najas marina L. Chang submersed –22.1 –22
2 Najas marina L. Longgan submersed –22.9 –23
3 Potamogeton pectinatus L. Chang submersed �20.4 �20
4 Potamogeton wrightii L. Hong submersed �17.1 �18
5 Potamogeton wrightii L. Shijiu submersed �21.0 �21
6 Potamogeton wrightii L. Yangcheng submersed �26.5 �26
7 Myriophyllum spicatum L. Hong submersed �25.8 �26
8 Myriophyllum spicatum L. Shijiu submersed n.a. �24
9 Myriophyllum spicatum L. Yangcheng submersed n.a. �27
10 Vallisneria asiatica L. Yangcheng submersed �28.0 �27
11 Hydrilla verticillata L. Yangcheng submersed �25.7 n.a.
12 Trapa sp. L. Chang floating –32.9 �31
13 Trapa sp. L. Hong floating –33.6 –32
14 Trapa sp. L. Longgan floating n.a. –32
15 Trapa sp. L. Yangcheng floating �36.9 �34
16 Trapa sp. L. Shijiu floating �35.9 –32
17 Nymphyoides peltatum L. Shijiu floating –33.6 –33
18 Alternanthera philoxeroides L. Hong emersed n.a. �34
19 Jussiaea repens L. Yangcheng emersed n.a. �34
20 Phragmites communis L. Hong emersed n.a. �37
21 Phragmites communis L. Shijiu emersed n.a. n.a.
22 Phragmites communis L. Yangcheng emersed n.a. n.a.
23 Zizania caduciflora L. Yangcheng emersed n.a. n.a.

n.a.: not available.

Fig. 4. Plots of the carbon isotope compositions against the hydrogen isotope compos
collected from the MLYR.
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plants (Table 3, Fig. 4). The d13Calk values of mid-chain n-alkanes
differ significantly between the submersed plants and floating
plants (one-way ANOVA, F = 9.0, p < 0.001), and between the sub-
mersed plants and emersed plants (one-way ANOVA, F = 11.6,
p < 0.001). In contrast, the d13Calk values of mid-chain n-alkanes
are not distinct between the floating plants and emersed plants
(one-way ANOVA, F = 2.6, p = 0.19). For the long-chain n-alkane
homologs in most of the submersed plant samples, the concentra-
tion of n-C29 alkane was not adequate to yield accurate d13C values
(Table 3). However, the d13Calk values of the n-C27 alkane are sim-
ilar between the floating plants and emersed plants (one-way
ANOVA, p > 0.05), whilst the d13Calk values of the n-C27 alkane
are lower in the submersed plants relative to the other two groups
(one-way ANOVA, p < 0.001).

The d2Halk values of submersed plants range from �177‰ to –
233‰, floating plants range from �162‰ to �203‰, and emersed
plants are between �166‰ to �204‰ (Table 3, Fig. 4). Due to the
presence of C25 across sample types, the d2Halk values of n-C25

alkane (d2HC25) can be used as representative of the mid-chain n-
alkanes in the plants. The one-way ANOVA analysis indicates no
d2H (‰, VSMOW)

C27 C29 C31 C23 C25 C27 C29 C31

.2 –22.7 –23.0 n.a. –232 –233 n.a. �237 n.a.

.5 �24.4 �24.9 n.a. �195 �199 �212 �215 n.a.
.3 �20.8 n.a. n.a. �208 �208 n.a. n.a. n.a.
.2 �19.4 n.a. n.a. �202 �200 �203 n.a. n.a.
.7 –22.5 n.a. n.a. �202 �203 �198 n.a. n.a.
.7 �27.2 n.a. n.a. �202 �200 �203 n.a. n.a.
.1 �26.4 n.a. n.a. n.a. �192 �179 n.a. n.a.
.6 �24.3 n.a. n.a. n.a. �214 n.a. n.a. n.a.
.8 n.a. n.a. n.a. �220 �215 n.a. n.a. n.a.
.6 �28.5 �29.0 n.a. �188 �177 �180 n.a. n.a.

n.a. n.a. n.a. n.a. �219 n.a. n.a. n.a.
.8 �31.8 n.a. n.a. n.a. �197 �187 n.a. n.a.
.8 –33.2 n.a. n.a. n.a. �188 �180 n.a. n.a.
.8 –32.5 n.a. n.a. n.a. �187 �185 n.a. n.a.
.5 �35.2 n.a. n.a. �162 �171 �169 n.a. n.a.
.2 –32.5 n.a. n.a. �185 �203 �201 n.a. n.a.
.4 –33.3 n.a. n.a. �188 �190 n.a. n.a. n.a.
.1 �34.6 �35.7 �36.9 n.a. n.a. �178 �166 n.a.
.4 �34.4 –33.7 �34.9 n.a. �178 �190 �193 n.a.
.4 �38.4 �38.2 n.a. n.a. �195 �192 �204 n.a.

�35.5 �35.3 n.a. n.a. �195 �192 �204 n.a.
–33.9 –33.7 n.a. n.a. n.a. �187 �199 n.a.
�36.0 �34.9 n.a. n.a. �183 �202 �194 n.a.

itions of mid-chain (a) and long-chain (b) n-alkanes in the aquatic plant samples
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significant difference among the d2HC25 values in the three types of
aquatic plants (p > 0.05; Fig. 4). Although the average d2HC25 value
in the submersed plants (-206‰, 1r 15‰) is lower than that in the
floating plant (-189‰, 1r 11‰), this difference does not pass the
significance test (p > 0.05). In the long-chain n-alkanes, the n-C27

alkane yielded higher d2H values than its counterparts (Table 3).
The of d2H values of n-C27 alkane (d2HC27) are not distinct among
the three types of aquatic plants (one-way ANOVA, p > 0.05). The
mean d2HC27 values are similar across the three types (submersed
�196‰, 1r 13‰; floating �184‰, 1r 12‰; emersed �190‰, 1r
8‰).

4. Discussion

4.1. Distinguishing submersed and floating aquatic plants by
combining Paq values and d13Calk values

For investigation of lake organic matter sources, the Paq ratio
has been an effective indicator to distinguish contributions from
submersed/floating aquatic macrophytes relative to subaerial
emersed and terrestrial plant inputs (Ficken et al., 2000). As ini-
tially proposed by Ficken et al. (2000) and found in later studies,
the Paq index can be used to distinguish emersed plant sources
from the submersed/floating plant sources in shallow lakes in
MLYR. However, Paq values alone cannot effectively distinguish
between submersed and floating plant sources due to similar
n-alkane molecular compositions. To distinguish between the
multiple potential aquatic plant sources of n-alkanes, additional
indicators are required.

For the batch of aquatic plant samples collected from the MLYR,
the combination of Paq and d13Calk values can effectively distin-
guish the three types of aquatic plants (Fig. 5). n-Alkanes from sub-
mersed plants have higher Paq values and higher d13C values
compared to floating plants and emersed plants (Fig. 5). Although
Fig. 5. Plots of Paq values against the carbon and hydrogen isotope compositions of mid-ch
the MLYR.

6

Paq values from floating plants are also higher, their d13Calk values
are relatively lower (Fig. 5).

Carbon isotope compositions of n-alkanes in plants closely
relate to the carbon fixation pathway, carbon source, and environ-
mental factors (Farquhar et al., 1989; Aichner et al., 2010a;
Diefendorf and Freimuth, 2017). Higher plants can be divided by
their photosynthetic pathways into C3 plants, C4 plants, and cras-
sulacean acid metabolism (CAM) plants (Ting, 1985; Farquhar
et al., 1982; Farquhar et al., 1989). The d13Calk values of C3 plants
are more negative, whereas those of C4 plants are more positive,
and the d13Calk values of CAM plants fall between C3 and C4 plants
(Collister et al., 1994; Chikaraishi and Naraoka, 2003; Bi et al.,
2005; Diefendorf and Freimuth, 2017). Although the C3, C4 and
CAM pathways can all exist in aquatic plants, most aquatic plants
use the C3 carbon fixation pathway (Keeley, 1998). The aquatic
plant species investigated in this study belong to C3 plants, except
for V. asiatica and H. verticillata. The CAM photosynthetic pathway
is used by V. asiatica, and C4 photosynthetic pathway is used by H.
verticillata (Holaday and Bowea, 1980; Keeley, 1998; Yin et al.,
2017).

In our results, the d13Calk values of some C3 aquatic plants (rang-
ing from �17.1‰ to �27.2‰ in P. malaianus) are higher than found
for the C4 plants (ranging from �27.6‰ to �29.0‰ in H. verticil-
lata), suggesting that the carbon fixation pathway has little effect
on d13Calk values of submersed plants (Table 3). In addition to car-
bon fixation pathway, the source of inorganic carbon is also an
important determinant of isotopic composition of organic com-
pounds. CO2 diffuses more slowly in water than in the atmosphere
(Smith and Walker, 1981; Maberly and Madsen, 1998). Thus, the
concentration of CO2 in water is lower than in air and often is a
limiting factor for the photosynthesis of aquatic plants (Madsen,
1984). In alkaline conditions (pH ca. 8 or more) like the lakes in this
study (Table 1), HCO3

– is the main form of dissolved inorganic
carbon. All leaves of submersed plants are under water, and these
ain (a, c) and long-chain (b, d) n-alkanes in the aquatic plant samples collected from
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species utilize HCO3
– for biosynthesis (Madsen, 1984). Because the

d13C value of HCO3
– is higher than that of atmospheric CO2

(Chikaraishi and Naraoka, 2003), the d13Calk values of submersed
plants are less negative (Allen and Spence, 1981; Prins and
Elzenga, 1989; Aichner et al., 2010c). In contrast, the d13Calk values
of the C23 and C25 n-alkanes in the floating plants are similar to
those of the C27 and C29 n-alkanes in the emersed plants (Fig. 5)
and terrestrial plants growing in a similar climate context (e.g.,
Chikaraishi and Naraoka, 2003; Bi et al., 2005), suggesting that
these plants mainly utilize atmospheric CO2.

Other than the dominant influence of the carbon source, envi-
ronmental factors and phylogeny would bring additional effects
on the variations of d13Calk values in aquatic plants. In this study,
some samples belong to the same species or the same genera
(e.g., P. wrightii); however, the d13Calk values of the C23 and C25 n-
alkanes are variable in the specimens collected from different lakes
(Table 3). These differences may result from the influence of envi-
ronmental factors on the growth rates of the aquatic plants by con-
trolling the supply of carbon sources (Keeley and Sandquist, 1992).
The spatial pattern of carbon pool in lakes may also affect the car-
bon isotope compositions of d13Calk values in aquatic plants (Keeley
and Sandquist, 1992). Wind-induced mixing is common in the
shallow lakes of the MLYR (Li et al., 2017). Thus, the dissolved inor-
ganic carbon is nearly homogeneous in these lakes due to weak to
absent water stratification. In this case, submersed plants from the
same lake have similar d13Calk values of the mid-chain n-alkanes.
Taking Lake Yangcheng as an example, the d13Calk values of the
C23 and C25 n-alkanes in the four submersed specimens range from
�25.7‰ to �28.0‰ (P. wrightii, M. spicatum, V. asiatica, and H. ver-
ticilata; Table 3).
4.2. Comparison of hydrogen isotope fractionation between aquatic
plants and C3 terrestrial plants

Different from the d13Calk values, our results reveal that the d2-
Halk values could not distinguish the different aquatic plant types
in the batch of samples collected from the MLYR (Fig. 5). In addi-
tion, in the same type of aquatic plants, a relatively poor correla-
tion is found between the d13Calk and d2Halk values of the same
n-alkane (Fig. 4). An exception is the n-C25 alkane, which shows a
moderately negative correlation between its carbon and hydrogen
isotope compositions in the floating plants (r = -0.90, p = 0.014).
This difference may result from the different factors controlling
carbon and hydrogen isotope compositions of n-alkanes in aquatic
plants.

C3 terrestrial plants are the dominant vegetation in the humid
regions influenced by the East Asian summer monsoon and are
the major contributors of long-chain n-alkanes to lacustrine sedi-
mentary sequences (e.g., Rao et al., 2016; Sun et al., 2016; Xue
et al., 2017). To improve interpretation of the hydrogen isotope sig-
nals of n-alkanes in lake sediments in regions dominated by the
East Asian summer monsoon, it is valuable to compare the appar-
ent fractionation (ealk/water) between the hydrogen isotope compo-
sition of n-alkanes and source water (d2Hwater) in aquatic plants in
the MLYR with those of terrestrial C3 plants growing under a sim-
ilar climate context (Chikaraishi and Naraoka, 2003; Bi et al., 2005).
The ealk/water value (‰) was calculated using the equation of Sachse
et al. (2012):

ealk=water ¼ ðd2Halk þ 1000Þ= d2Hwater þ 1000
� �� 1 ð1Þ

The actual d2H values of lake water (d2Hlw) are not available for
the present study. Instead, we estimate mean annual d2H values of
precipitation (d2Hp), from the precipitation isotope calculator
(Bowen et al., 2005; https://wateriso.utah.edu/wateriso-
topes/pages/data_access/oipc.html) to obtain the ealk/water values.
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This approach has been widely applied in previous studies (e.g.,
Sachse et al., 2004, 2012; Rao et al., 2009; McFarlin et al., 2019).
Previous studies note that there is little offset between lake water
and precipitation d2H values in the MLYR (Zhang et al., 2020; Wu
et al., 2021), providing confidence for using d2H of precipitation
as a constraint on water source. The ealk/water values of the C23 to
C29 n-alkanes in terrestrial C3 plants range from �35‰ to
�176‰, in submersed plants from �133‰ to �202‰, in floating
plants from �117‰ to �160‰, and in emersed plants from
�128‰ to �169‰ (Fig. 6). The C23 and C29 n-alkanes have been
widely selected as representative of aquatic plants and C3 terres-
trial plants, respectively. In our dataset, the ealk/water values of the
C23 n-alkane (-166 ± 16‰) in submersed plants are more negative
than those of the C29 n-alkane (-128 ± 30‰) in C3 terrestrial plants
(one-way ANOVA F = 11.9, p < 0.01).

The d2Halk values in leaves of higher plants are affected by var-
ious factors, particularly the isotope compositions of source water,
the influence of evapotranspiration, and biosynthetic fractionation
(Sachse et al., 2012). In humid climates, precipitation exceeds
evaporation, and previous studies conclude that evaporation has
only a minor influence on the hydrogen isotope composition of
lake water in these regions (Sachse et al., 2012; Sessions, 2016;
Zhang et al., 2020). In contrast, evapotranspiration could enrich
the leaf water of terrestrial plants in 2H (Kahmen et al., 2013a).
In this way, aquatic plants probably utilize source water with
d2H values close to d2Hp as discussed above, whilst leaf water used
for leaf wax synthesis in terrestrial C3 plants has higher d2H values
than d2Hp (Sachse et al., 2004; Mügler et al., 2008).

Biosynthetic fractionation (ebio) may have an additional role in
the relatively negative d2Halk values of aquatic plants found in this
study. The mean ealk/water values of the C23 and C25 n-alkanes
observed in the MLYR are close to published values of hydrogen
fractionation (Huang et al., 2004; Sachse et al., 2004; Li et al.,
2015). In a batch of surface sediments of 36 lakes in North America,
Huang et al. (2004) observed an average ealk/water value of �156‰
for the C17 n-alkane sourced from algae or photosynthetic bacteria
in the lakes. Across a range of lakes, Sachse et al. (2004) found a
similar average ealk/water value of �157‰ for the C17 n-alkane. In
the transect from Sihailongwan Maar Lake to Lake Baikal, Li et al.
(2015) calculated a mean ealk/water value of �159‰ for the C23 n-
alkane. For algae and submersed plants collected from lakes in
the Tibetan Plateau, Liu and Liu (2019) found a mean ealk/water value
of �162‰ for n-alkanes. In three submersed species collected from
Gunma, Japan, Chikaraishi and Naraoka (2003) showed a mean ealk/
water value of �135 ± 17‰. In fact, two of the three species had an
ealk/water value of �156‰ and �161‰ for the n-C23 alkane, quite
close to the mean value observed in the MLYR. The latest synthesis
of global apparent hydrogen isotope fractionation between sedi-
mentary n-C23 alkane and lake waters yielded an intercept of
�159‰ (McFarlin et al., 2019). Because the influence of evapora-
tion on the isotope composition of lake waters is weak in humid
climates (Sessions, 2016), the similar ealk/water values for n-
alkanes in algae and submersed plants from global studies clearly
support a nearly constant (~�160‰) hydrogen isotope fractiona-
tion during lipid production in submersed plants (Liu and Liu,
2019; McFarlin et al., 2019). This finding has important implica-
tions for paleoenvironmental applications. With the nearly con-
stant ealk/water value, the d2Halk values of submersed plants are
effective recorders of the hydrogen isotope composition of the
source water, which is precipitation in most cases (Sachse et al.,
2004; Liu and Liu, 2019).

Due to the difficulty in constraining the isotope composition of
leaf water used for wax production in terrestrial plants, there is no
consensus for their ebio values. Some studies have argued that the
ebio values are variable among different species or different plant
life-form types (e.g., Newberry et al., 2015; Sachse et al., 2015;

https://wateriso.utah.edu/waterisotopes/pages/data_access/oipc.html
https://wateriso.utah.edu/waterisotopes/pages/data_access/oipc.html
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Tipple and Ehleringer, 2018). However, the hydrogen isotope frac-
tionation between leaf water and lipid (el/w) is often treated as a
reliable representative of ebio (Berke et al., 2019). The latest synthe-
sis by Liu and Liu (2019) showed mean ebio values of �162‰ for
grasses and �139‰ for woody plants. This signature of ebio in
grasses is close to the above ealk/water values of submersed plants.
If woody plants have an ebio of �139‰ (Sachse et al., 2006; Rach
et al., 2014), the offset between ebio and the mean ealk/water value
of the C29 n-alkane in Chikaraishi and Naraoka (2003), Bi et al.
(2005), and the global synthesis (-113 ± 31‰, Sachse et al., 2012)
has an amplitude of about 20‰. This amount matches the variation
of deuterium leaf water evaporative enrichment modeled by
Kahmen et al. (2013b).

The seasonality of precipitation isotope compositions and the
major synthesis time of n-alkanes in aquatic plants impose addi-
tional constraints on interpretations of their d2H values. In the
MLYR, the d2H values of rain display a large seasonal difference,
with more negative values in the summer monsoon dominated
seasons (June to September; e.g., Huang et al., 2018; Zhang et al.,
2020). Previous studies have demonstrated that the synthesis of
leaf wax n-alkanes in terrestrial plants is not uniform in the grow-
ing season, with some bias towards specific intervals such as the
early leaf development stage (e.g., Tipple et al., 2013; Freimuth
et al., 2017). Knowledge of the seasonality of n-alkane synthesis
in freshwater aquatic plants is limited. If the mode of n-alkane syn-
thesis in terrestrial C3 plants is the same as for aquatic plants, the
comparison of results in the MLYR with published data would be
affected by the sampling time. However, previous studies fre-
quently observed a decreasing trend of d2Halk values in C3 terres-
trial plants along with leaf growth (e.g., Tipple et al., 2013;
Freimuth et al., 2017; Huang et al., 2018). To constrain the ealk/water

difference between submersed plants and C
3
terrestrial plants, both

a larger dataset and better information on the time of n-alkane
synthesis in aquatic plants would be needed.
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The comparison of ealk/water between submersed plants and C3

terrestrial plants clearly supports the potential of eterr-aq to reflect
the degree of evapotranspiration and the associated relative
humidity (Rach et al., 2014, 2017). With greater evapotranspira-
tion, eterr-aq values will increase, due to the relatively stronger
influence of evapotranspiration on terrestrial plants than on aqua-
tic plants. In lake sediment cores from the Tibetan Plateau span-
ning the Holocene, eterr-aq values reach as low as �80‰ (Rao
et al., 2014). In Lake Meerfelder Maar, the eterr-aq values were < -
30‰ in the wetter climate interval before the onset of the Younger
Dryas cooling event (Rach et al., 2014). However, the eterr-aq values
are not necessarily < 0 under humid climates with little or weak
influence of evaporation. In the humid East Asian summer mon-
soon dominated regions, the eterr-aq value will be as high as 28‰
(Fig. 6). In this case, it is best to focus on the trend rather than
the absolute eterr-aq values to track humidity-derived evapotranspi-
ration processes.

The C29 n-alkane is relatively high in abundance in some sub-
mersed and floating plants (Fig. 2, Table 2). Previous studies sug-
gest that this compound comes from both terrestrial and aquatic
sources, so it may not confidently be used as a biomarker for ter-
restrial input into lacustrine environments (e.g., Liu et al., 2016;
Liu and Liu, 2019; Andrae et al., 2020). In our sample set, the C29

n-alkane from submerged plants has very low hydrogen isotope
values that resemble those of the mid-chain n-alkanes (Fig. 4). This
isotopic feature can aid interpretation of the sources of C29 n-
alkane in lacustrine sediment sequences.

5. Summary and conclusions

Aquatic plant samples were collected from five shallow lakes in
the MLYR to analyze the molecular distributions and carbon and
hydrogen isotopic compositions of their n-alkanes to differentiate
the n-alkane sources among different plant types in shallow
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freshwater lakes and to improve interpretation of their d2Halk val-
ues. The main findings are:

1. In the MLYR, the Paq ratio could distinguish the n-alkane con-
tributions of submersed and floating plants from emersed plants.
In addition, n-alkane d13C values are distinct between submersed
plants and emersed plants, the latter having lower d13C values. This
difference is due to the utilization of different dissolved inorganic
carbon sources. Hence, combining Paq and n-alkane d13C values
has the potential to differentiate n-alkane contributions from dif-
ferent aquatic plant types, particularly the submersed and emersed
plants.

2. In the humid MLYR, the apparent fractionation of hydrogen
isotopes between mid-chain n-alkanes in submersed plants and
precipitation (-166 ± 16‰) is similar to previous results, confirm-
ing a nearly constant ealk/water for submersed plants. Thus, the d2-
Halk values of submersed plants can be effective indicators of the
hydrogen isotope composition of precipitation.

3. Compared to terrestrial C3 dicots in the East Asian summer
monsoon-dominated regions, the mean ealk/water value is lower in
aquatic plants. A probable explanation is the different influences
of evaporation on lake water and evapotranspiration on leaf water.
In this situation, it is more reliable to focus on isotopic patterns
rather than absolute eterr-aq values to track humidity-derived evap-
otranspiration processes.
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